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Abstract  Introduced seaweeds can alter the struc-
ture and productivity of marine food webs, especially 
when they lack top-down control by native herbi-
vores. However, relatively little is known about the 
role of consumption of introduced seaweeds by native 
herbivores, and the potential role of seaweed nutrient 
content to mediate local herbivore consumption. In 
southeastern USA estuaries, the introduced red sea-
weed, Gracilaria vermiculophylla, has transformed 
unvegetated intertidal mudflats into a patchwork of 
non-native seaweed beds. We used a series of labo-
ratory feeding assays to assess how invertebrate and 
fish species on the Georgia coast utilize G. vermiculo-
phylla as a novel food resource. Because G. vermicu-
lophylla readily absorbs nutrients, we also tested the 
role of nutrient enrichment on its consumption. We 
found that G. vermiculophylla was not significantly 
consumed by the mud snail Ilyanassa obsoleta nor the 
mud crab Eurypanopeus despressus, but it was rap-
idly eaten and even preferred over the native seaweed 
Ulva lactuca by adult pinfish Lagodon rhomboides. 
Nutrient enrichment of G. vermiculophylla did not 

affect consumption rates by the amphipod Ampithoe 
valida, but did double consumption rates by pinfish 
over unenriched seaweed. The differential responses 
of native consumers highlight the importance of eval-
uating multiple species when investigating introduced 
species’ impacts on recipient communities. Given that 
consumer identity and nutrient content of the seaweed 
mediated the consumption of the non-native seaweed, 
site-specific patterns of consumer populations and 
environmental conditions could lead to patchy abun-
dance and impacts of the non-native seaweed.

Keywords  Diet breadth · Enemy escape · 
Herbivory · Marine algae · Novel prey · Secondary 
metabolites

Introduction

Across ecosystem types, one of the proposed causes 
for rapid expansion of introduced primary producers 
is the enemy escape hypothesis that can stem from 
the lack of top-down control by native herbivores 
(Keane and Crawley 2002; Callaway and Ridenour 
2004; Thomsen et al. 2016). While some non-native 
seaweeds appear to fit this pattern of escape from 
native herbivore control (e.g., Gollan and Wright 
2006; Monteiro et  al. 2009; Nejrup et  al. 2012; 
Wright et  al. 2014), many marine generalists con-
sume a wide range of resources, including non-native 
seaweeds (e.g., Pedersen et  al. 2005; Pedersen et  al. 
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2016; Sumi and Scheibling 2005; Cummings and 
Williamson 2008; Britton-Simmons 2004; Thomsen 
et  al. 2016). The incorporation of non-native sea-
weeds into native grazer diets can reduce competi-
tion among grazers, alleviate stress from dwindling 
native resources, and provide more nutrient-rich 
resources for native consumers (Nejrup et  al. 2012). 
In nearshore regions where native macroalgal produc-
tion is low, non-native macroalgae may benefit native 
consumers by increasing the diversity and abundance 
of basal resources (Rodriguez et al. 2006). However, 
if native herbivores do not consume non-native sea-
weeds, introduced seaweeds left unchecked can out-
compete native primary producers and further reduce 
food availability. Thus, understanding the foraging 
preferences of native grazers is necessary to deter-
mine the effects of non-native seaweeds on recipient 
ecosystems’ trophic structures.

Herbivore food preferences are dictated by 
resource traits, including morphology, chemical 
defenses, nutritional quality, and availability (Nicotri 
1980; Hay 1991, 1996; Duarte et  al. 2010. 2011; 
Jiménez et al. 2015). Seaweeds are particularly plas-
tic in their responses to biotic and abiotic conditions 
(Pelletreau and Targett 2008), and a single popula-
tion can express an array of chemical, nutritional, and 
structural traits. For example, despite their ubiquity in 
marine systems, chemical defenses can vary within a 
single seaweed population based on genetic variation, 
environmental conditions, and herbivore pressure 
(Hay 1996; Hay and Fenical 1996; Van Alstyne et al. 
2007; Jormalainen and Honkanen 2008). Further-
more, the chemical defenses and nutritional quality 
of macroalgae can be linked because nutrient avail-
ability can drive tradeoffs in growth and generation 
of secondary compounds in seaweeds (Stefels 2000; 
Pavia and Toth 2008). Though seaweed traits exist on 
a continuum in nature, few studies have investigated 
how variability in non-native seaweed traits, such as 
C:N content, affect herbivory by native grazers.

The responses of native herbivores to an intro-
duced primary producer can vary. Commonly, 
marine invertebrate grazers are the focus of invasive 
seaweed-herbivore interaction studies, yet herbivo-
rous fish (and sometimes turtles) can shape seaweed 
communities (e.g., Ojeda and Munoz 1999). Despite 
fundamental differences in size, mobility, and nutri-
ent requirements between herbivorous invertebrates 
and fish, few studies have simultaneously tested the 

feeding preferences of diverse species with non-
native seaweeds (Enge et  al. 2017). Our current 
understanding of native and non-native plant–herbi-
vore interactions may underestimate the incorporation 
of non-native primary producers into marine trophic 
structures.

The recent invasion of the South Atlantic Bight, 
USA by Gracilaria vermiculophylla, a rhodophyte 
native to Asia, provides an opportunity to investi-
gate the role of a novel, non-native basal resource in 
native herbivore diets across different trophic levels. 
Gracilaria vermiculophylla was first documented on 
the east coast of North America in North Carolina 
in the early 2000s (Freshwater et  al. 2006) and was 
likely cryptically introduced to Georgia around that 
time; though, the first record of the non-native sea-
weed in Georgia did not occur until nearly a decade 
later (Byers et al. 2012). Its rapid spread, tolerance to 
harsh environmental conditions, lack of competition, 
and mutualistic relationship with the native tubeworm 
Diopatra cuprea have led to its current dominance on 
intertidal mudflats throughout the southeastern USA 
(Thomsen and McGlathery 2007; Byers et  al. 2012; 
Kollars et al. 2016). In much of G. vermiculophylla’s 
non-native range, native submerged aquatic vegeta-
tion, such as seaweeds and seagrasses, are diverse and 
abundant. However, the estuaries and coast of Geor-
gia have low production and diversity of native sea-
weeds, likely due to high turbidity, high sedimenta-
tion of soft sediments, and a general scarcity of hard 
substrate needed for attachment. For example, G. 
vermiculophylla represented 90–100% of macroalgal 
biomass at sites surveyed along the coasts of South 
Carolina and Georgia, with the native Ulva spp. rep-
resenting the remaining biomass (Byers et al. 2012). 
In this area, G. vermiculophylla’s novel structure is an 
important habitat resource for epifaunal invertebrates, 
harboring greater densities than the previously unveg-
etated mudflat (Byers et al. 2012; Wright et al. 2014). 
Despite the prevalence of G. vermiculophylla in 
southeastern estuaries and its role as preferred habitat 
for many herbivorous species, little is known about 
the seaweed’s role as a novel food source for native, 
generalist consumers (Wright et al. 2014).

Prior to the introduction of G. vermiculophylla, 
primary productivity in southeastern estuaries origi-
nated from the detritus of Spartina alterniflora stands 
(Teal 1962) and from benthic and planktonic micro-
algae (Mann 1988). Because seaweeds can provide 
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more readily digestible and more nutrient rich pri-
mary production than co-occurring marine vascular 
plants (Mann 1988; Hay and Steinberg 1992; Duarte 
et al. 2010; Haram et al. 2020), the novel, non-native 
seaweed may be an attractive resource for generalist 
consumers in these ecosystems. In fact, G. vermicu-
lophylla is known for its fast absorption of nitrogen, 
making G. vermiculophylla a potentially nutritious 
resource (Abreu et  al. 2011a,b; Pedersen and John-
sen 2017). However, previous work suggests that high 
levels of chemical defenses in G. vermiculophylla tis-
sue deter invertebrate grazers in the seaweed’s intro-
duced range (Nylund et al. 2011; Rempt et al. 2012; 
Hammann et al. 2016), though some species consume 
G. vermiculophylla despite the presence of inhibitory 
compounds (Weinberger et  al. 2008). Furthermore, 
the strength of herbivory can be nuanced, with sea-
sonality and diversity of native resources affecting 
consumption of the non-native seaweed (Weinberger 
et al. 2008; Nejrup et al. 2012).

To investigate how G. vermiculophylla is utilized 
by common, generalist consumers in southeastern 
estuaries, we conducted laboratory feeding assays 
across diverse potential consumers. For the epifau-
nal invertebrates, we tested the mud crab Eurypan-
opeus depressus, the mud snail Ilyanassa obsoleta, 
and the amphipod Ampithoe valida. These macroin-
vertebrates are commonly associated with G. ver-
miculophylla on intertidal mudflats in Georgia, USA 
(Byers et  al. 2012; Bishop and Byers 2015; Haram 
et  al. 2018, 2020) and are known to consume algae 
and other plant material (MacDonald 1982; Cruz-
Rivera and Hay 2000; Lohrer et  al. 2000; Giannotti 
and McGlathery 2001; Douglass et  al. 2011; Reyn-
olds et al. 2012). We also selected the native pinfish 
Lagodon rhomboides. This species is one of the most 
abundant bait fish in estuarine waters of the south-
eastern USA (Stoner 1980). They also undergo an 
ontogenetic dietary shift as they mature, with older 
fish consuming more macrophytes (Stoner 1980; 
Winemiller et al. 2007). Due to their high abundance 
and their mixed diets, L. rhomboides are responsible 
for shaping epifaunal communities and organic mat-
ter cycling through substantial consumption of plant 
material and epifaunal invertebrates during peak sea-
sonal abundances in the spring and summer (Adams 
1976; Nelson 1979; Stoner 1980), making them a 
possible pathway for G. vermiculophylla entering 
into the estuarine trophic structure. Given that our 

selected consumers are generalists, we hypothesized 
that the native grazers would eat G. vermiculophylla 
in both choice and no-choice assays.

We also assessed how nutrient enrichment of the 
seaweed affects its consumption, again using labo-
ratory feeding assays. We hypothesized that higher 
nutrient content would make the non-native resource 
more attractive to native grazers, thus increasing 
consumption by generalist grazers across experi-
ments. Our experimental assays demonstrate how G. 
vermiculophylla may be integrated into southeastern 
estuarine food webs, including what native species 
consume it and possibly limit its abundance.

Methods

Site description

All feeding experiments were conducted in a flow-
through seawater system at the Skidaway Institute of 
Oceanography in Savannah, Georgia. Invertebrates 
and seaweed were collected from a single site at Priest 
Landing, Savannah, Georgia (31°57′43.88"N, 81° 
0′46.00"W) to reduce variability in consumer condi-
tion and seaweed quality. However, Ulva lactuca, the 
native, low-abundance seaweed was collected from 
one site at the Grice Marine Laboratory in Charles-
ton, South Carolina (32°45′3.93"N, 79°54′5.85"W) in 
2014 due to very low abundances in Savannah, Geor-
gia. All seaweeds were defaunated prior to use by 
rinsing the tissue with filtered seawater and removing 
any remaining invertebrates and eggs by hand.

Native versus non‑native feeding assays

Epifaunal Invertebrate Consumers To test if the 
selected generalists consume the non-native seaweed 
when native food resources are not available, we 
conducted a no-choice feeding assay. We paired this 
with a choice assay to determine if consumption of 
the non-native  seaweed was consistent when mul-
tiple resources were available. Using the mud crab 
Eurypanopeus depressus and the mud snail Ilyanassa 
obsoleta, we conducted the epifaunal invertebrate 
choice and no-choice feeding assays in July 2014. 
For each assay, we collected all invertebrates from 
the mid-intertidal region. We haphazardly collected 
large I. obsoleta individuals (10–18  mm) from the 
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mudflat. Snails were not sexed due to the difficulty of 
non-destructively distinguishing between sexes. We 
collected E. depressus by extracting oyster clumps, 
which are its habitat, and removing the crabs from the 
oysters. We kept only E. depressus (9–11 mm) with 
both claws intact for the experiment. Snails and crabs 
were housed separately in plastic containers with 
mesh sides in the flow-through seawater system prior 
to the assays.

We conducted E. depressus and I. obsoleta assays 
simultaneously with ten replicates of each treat-
ment level. A single invertebrate was housed in an 
individual tubular PVC container (3.81  cm diameter 
x ~ 12  cm depth) with 0.5  mm mesh secured to the 
openings that allowed for seawater circulation. For the 
no-choice assays, we placed ~ 0.5 g wet mass (wm) of 
either G. vermiculophylla or U. lactuca in each con-
tainer. All macroalgae were spun in a salad spinner 
for 30 s before weighing to remove excess water and 
standardize wet mass measurements. For the choice 
assays, ~ 0.5 g wm of both G. vermiculophylla and U. 
lactuca were placed simultaneously into the container 
of each I. obsoleta and E. depressus. We included 
paired autogenic controls (n = 10 for each seaweed) 
of the same quantity of each seaweed species, held 
in consumer-free containers, to account for natural 
variability in macroalgal biomass due to photosynthe-
sis and decomposition of the macroalgae during the 
experiment (Sotka and Hay 2002). The assays ran for 
seven days, at which point the remaining macroalgae 
in each container were removed, spun and weighed to 
measure the remaining wet biomass (g wm).

Fish Consumer For the fish, we assayed L. rhom-
boides in August 2012. We collected L. rhomboides 
(9–12  cm) from the Skidaway River estuary using 
baited traps that were checked every 24  h. During 
the feeding assays, one L. rhomboides was placed 
in a plastic container (0.7 m × 0.4 m × 0.3 m depth) 
within a flow-through seawater system. We divided 
each container in half with plastic Vexar® mesh 
(1  mm), and on both halves of each container we 
placed one of three treatment levels: G. vermicu-
lophylla (no choice), U. lactuca (no-choice), or G. 
vermiculophylla and U. lactuca (choice). On the 
treatment half of the container, we placed one fish; 
on the opposite half we did not place a fish so that 
side served as an autogenic control. The position of 
the fish and autogenic controls were systematically 
alternated across the replicates. For all replicates, 

we threaded the seaweed through 9  cm of twisted 
nylon rope and attached it to a weight to keep the 
seaweed in place. While in holding, the fish were 
fed shrimp pellets ad libidum. Prior to the initiation 
of the experiment, we withheld food for 24  h. We 
conducted the no-choice assay first, offering each 
fish ~ 1.0  g of either U. lactuca or G. vermiculo-
phylla (n = 4 per treatment level). We ran the assays 
for 48  h, at which point we removed the seaweed, 
spun it for 30 s to remove excess water, and weighed 
the remaining wet biomass (g). We used the same 
fish for the choice assays. For the choice assay, we 
offered each fish (n = 8) a total of ~ 2.0 g of seaweed 
(~ 1.0  g of each seaweed species). The seaweed 
treatment levels were kept separate by attaching the 
different treatment levels to separate ropes. Other-
wise, the choice assay followed the methods of the 
no-choice assay.

Data Analysis In all assays, the response variable, 
consumed biomass (g wm), was calculated for each 
seaweed species using the following equation: Ti (Cf 
/Ci)—Tf, where Ti and Tf represent the initial (i) and 
final (f) biomass of seaweed offered to consumers 
and Ci and Cf represent that of the paired autogenic 
control (Sotka and Hay 2002). For all data presented 
in this study, we determined data normality, and 
therefore the appropriateness of parametric analy-
ses, by visually assessing our distributions with the 
‘qqnorm’ function (package ‘stats’) and by running 
Shapiro–Wilk tests (α = 0.05) with the ‘shapiro.test’ 
function (package ‘stats’). All data were analyzed in 
R 3.4.0 (R Core Team 2017).

For the epifaunal invertebrate experiment, the 
response variable, consumed biomass (g wm), was 
not normally distributed for both the choice and no-
choice assays. Therefore, we used non-parametric 
analyses, which do not assume normal distributions 
or equal variances. We analyzed the choice assays 
using Wilcoxon Signed Rank tests due to the paired 
nature of the data. However, we analyzed the no-
choice invertebrate feeding assays with Wilcoxon 
Rank Sum tests because independent consumers were 
used for each replicate and therefore were not paired. 
For the fish consumer experiment, the distribution of 
consumed biomass (g wm) met parametric assump-
tions. Thus, we analyzed our fish consumer choice 
assay using a paired t-test and our no-choice assay 
with a Welch’s two sample t-test due to dissimilarity 
of variances (package ‘stats’).
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Nutrient enrichment assays

Fish Consumer We collected adult L. rhomboides 
(9 – 12.5  cm) from the Wilmington River estuary, 
Georgia in August 2014 using baited traps that were 
checked every 24 h. In the laboratory, prior to the start 
of the experiment, individuals were housed together 
(up to 3 per container) in ~ 28 L filtered aquaria. In 
addition to a recirculating filter, each aquarium was 
aerated, and seawater salinity was maintained at ~ 35 
psu. Nutrient quality in the aquaria was monitored 
daily using an API® Saltwater Master Test Kit. The 
fish were fed shrimp pellets daily ad  libitum and a 
25% water change was completed every other day.

During the feeding assays, each L. rhomboides was 
placed in a plastic container (0.7  m × 0.4  m × 0.3  m 
depth) within a flow-through seawater system. As 
described above in Native versus Non-Native Feeding 
Assays ‘Fish Consumer’, each container was divided 
in half with mesh and designed to hold a fish treat-
ment level on one half and an autogenic control on 
the other. After allowing 24  h for the fish to accli-
mate, each container received one of three treatment 
levels [enriched G. vermiculophylla (no-choice), non-
enriched G. vermiculophylla (no-choice), or enriched 
and non-enriched G. vermiculophylla (choice)]. A 
fish was added to one side, and the other side was the 
autogenic control that received no fish.

Fish were offered ~ 1.0  g of seaweed in the no-
choice assay and a total of ~ 2.0  g of seaweed (1  g 
of each treatment level) in the choice assay. For all 
replicates, the seaweed was threaded through 9 cm of 
twisted nylon rope and attached to a weight to keep 
the seaweed in place (Fig. 1). Each trial ran for three 
days, when the seaweed was removed, spun for 30 s, 
and weighed for final biomass (g wm). In this experi-
ment, we allowed the fish to eat for three days rather 
than two days (as in Native vs. Non-Native Feeding 
Assay ‘Fish Consumer’) because this experiment 
was conducted late in the fall when seawater tem-
peratures were lower and fish consumption rates 
were depressed. Due to constraints in the number of 
flow-through containers available, we were only able 
to run up to two replicates of each treatment level 
simultaneously. Unlike the previous L. rhomboides 
feeding trials, each fish was cycled through to receive 
all treatments over the course of the experiment. The 
sequence of treatment levels was randomized per 
fish, and food was withheld for 24 h before each trial. 

The experiment was completed from November to 
December 2014 with a total of ten replicates of each 
treatment level per assay.

For the enriched and non-enriched treatment lev-
els, ~ 200  g wm of G. vermiculophylla were col-
lected from the field, rinsed in filtered seawater, and 
manually defaunated. We placed ~ 100  g of G. ver-
miculophylla in two clear, plastic Sterilite® bins 
(42.5 cm × 30 cm × 17.8 cm depth), with 14 L of aer-
ated, filtered seawater. The seaweed was grown under 
Phillips® T8 32-W daylight deluxe bulbs 6500 K set 
to a 16:8 h light:dark cycle to mimic natural summer 
conditions for ten days before initiation of the feed-
ing trials. Deionized water was added to each bin 
daily to maintain consistent salinity (~ 31 psu). For 
the nutrient-enriched treatment level, one bin of G. 
vermiculophylla was treated with a solution of 1.0 g 
of NH4Cl, 1.5 g of NaNO3, and 0.15 g of Na2HPO4 
six times over the course of the growth period. The 
combined use of ammonium, nitrate, and phosphorus 
was adapted from methods in Abreu et  al. (2011b) 
and previous pilot studies.

To assess effectiveness of our nitrogen enrich-
ment method, halfway through the enrichment pro-
cess, we took five G. vermiculophylla tissue samples 
(~ 1 g) from five different thalli within each treatment 
level bin (nitrogen-enriched and non-enriched). We 
pooled the samples per treatment level, rinsed them 
with deionized water, and dried them at 55  °C in a 
drying oven for 48  h. Once dried, we ground each 

Fig. 1   Enriched (forefront) and non-enriched (back) Graci-
laria vermiculophylla paired in a replicate of the nutrient 
enrichment, Lagodon rhomboides choice experiment. The sea-
weed is threaded through rope for attachment and shows more 
consumption of enriched G. vermiculophylla than the non-
enriched
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pooled sample using a mortar and pestle and placed 
it in a glass scintillation vial. We dried the ground 
samples again at 55  °C in a drying oven overnight 
to remove moisture that may have accumulated dur-
ing the grinding process. The samples were homog-
enized and ~ 25 mg of each sample was placed in indi-
vidual foil packets. The samples were analyzed with 
a CHN analyzer at the Skidaway Institute of Ocean-
ography for percent nitrogen content and C:N. Our 
nutrient-enriched method increased nitrogen content 
from ~ 2% N (C:N ~ 14) to ~ 6% N (C:N ~ 5), which 
mimics levels of percent nitrogen found in G. vermic-
ulophylla in highly urbanized estuaries (e.g., Gorman 
et al. 2017).

Epifaunal Invertebrate Consumer To investi-
gate the role of nutrient content on consumption by 
invertebrates, we conducted a no-choice assay to test 
consumption of G. vermiculophylla by a known con-
sumer across three nutrient absorption regimes. We 
used the native amphipod Ampithoe valida, which co-
occurs with G. vermiculophylla in southeastern USA 
estuaries (Haram et al. 2020) and are known to readily 
consume G. vermiculophylla (Bippus et al. 2018) and 
congeneric seaweed species (Reynolds et  al. 2012; 
Scheinberg 2015). In June 2016, we collected A. 
valida from Priest Landing by gathering G. vermicu-
lophylla from the Spartina-mudflat ecotone and rins-
ing it in filtered seawater to dislodge associated epi-
faunal invertebrates. We then identified the dislodged 
amphipods to species under a dissecting scope. Both 
adult males and females (4.5–12 mm in length) were 
used for the experiment. We housed individual A. 
valida in plastic Reditainer® cups (~ 164  mL) that 
we filled with 150 mL of filtered seawater (~ 31 psu) 
and capped with plastic lids. We punctured the lids 
with ~ 1 mm holes to reduce evaporation while allow-
ing for oxygen flow. Food was withheld from A. val-
ida for 48 h prior to initiation of the experiment. Each 
amphipod was offered ~ 0.50 g wm of one of the three 
G. vermiculophylla treatment levels detailed below 
(n = 12). We spun the seaweed for 30 s prior to weigh-
ing. Autogenic controls were included in separate 
containers without an amphipod for each replicate. 
The experiment ran for seven days, and every other 
day we extracted 50 mL of water from each container, 
targeting amphipod waste that accumulated on the 
bottom, and replaced it with fresh, filtered seawater. 
Mortality of A. valida occurred in block 12 of the 

non-enriched and freshly collected treatment levels 
(n = 11, accordingly).

We used three treatment levels to determine the 
effect of nutrient content on amphipod feeding: nutri-
ent-enriched, non-enriched, and freshly collected G. 
vermiculophylla. The freshly collected treatment level 
allowed us to assess whether growing the other treat-
ment levels in laboratory conditions altered consump-
tion by the grazers. G. vermiculophylla was grown 
in the laboratory prior to the feeding trial using the 
same method as described in the Nutrient Enrich-
ment Assay ‘Fish Consumer’ section. The freshly col-
lected treatment level consisted of G. vermiculophylla 
collected from the field at Priest Landing, rinsed, 
and defaunated on the same day that the experiment 
began.

Data Analysis For all assays, we calculated 
the consumption of seaweed biomass (g wm) and 
assessed data normality using the same methods as 
in the Native vs. Non-Native Feeding Assays experi-
ments. For the epifaunal invertebrate consumer exper-
iment, we tested for differences in consumed biomass 
(g wm) as a function of nutrient treatment level using 
a One-Way ANOVA (package ‘stats’). For the fish 
consumer experiment, we tested for differences in 
consumed biomass (g wm) as a function of nutrient 
treatment level using paired t-tests (package ‘stats’) 
for both the no-choice and choice assays. The paired 
t-test was used for the no-choice assays because the 
same individual fish was used as a single replicate 
across both nutrient treatment levels.

Results

Native versus non‑native feeding assays

Epifaunal Invertebrate Consumer At the end of the 
seven day choice and no-choice feeding assays, mud 
snail I. obsleta and mud crab E. depressus demon-
strated differences in feeding preferences between the 
native U. lactuca and non-native G. vermiculophylla. 
In the no-choice feeding assays, I. obsoleta consumed 
significantly more, over 10 times more on average, 
U. lactuca than G. vermiculophylla (Wilcoxon rank 
sum test: W = 64.5, p = 0.04; Fig.  2a; see Appendix 
Table 1 for all mean ± SE consumed wet biomass val-
ues). However, for E. depressus higher variability in 
consumption of U. lactuca and G. vermiculophylla 
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led to no statistical difference between treatment 
levels (Wilcoxon rank sum test: W = 42, p = 0.60; 
Fig. 2a). In the choice feeding assays, I. obsoleta con-
sumed over 10 times more native U. lactuca biomass 
than non-native G. vermiculophylla biomass (Wil-
coxon signed rank test: V = 42, p = 0.02; Fig.  2b). 

Similarly, E. depressus consumed significantly more 
U. lactuca biomass than G. vermiculophylla, consum-
ing 3 times more of the native seaweed (Wilcoxon 
signed rank test: V = 55, p < 0.01; Fig. 2b). 

Fish Consumer After 48 h, in the no-choice feed-
ing assays, L. rhomboides ate 60% more on average of 

Fig. 2   Amount of biomass (g wm) of native (Ulva lactuca) 
and non-native (Gracilaria vermiculophylla) seaweed con-
sumed by native Ilyanassa obsoleta and Eurypanopeus depres-
sus in (a) no-choice (n = 10) and (b) choice (n = 10) feeding 
assays. In the no-choice feeding assays, the consumers were 
offered ~ 0.5  g of one seaweed species; in the choice feeding 
trials, invertebrate consumers were offered ~ 0.5 g of each sea-
weed species. Assays ran for seven days. Grey represents the 

U. lactuca treatment level, and white represents the G. vermic-
ulophylla treatment level. The box and whisker plots represent 
the median (midline) and third and first quartiles (75th and 
25th percentiles). The upper and lower dashed lines illustrate 
the maximum and minimum values up to 1.5 times the inter-
quartile range; data points beyond that interval are represented 
as outliers (white dots). * indicates treatment levels that dif-
fered significantly
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G. vermiculophylla than U. lactuca, though their con-
sumption was not significantly different between the 
treatment levels due to large variance (Welch’s t-test: 
t4.18 = −1.01, p = 0.37; Fig.  3a). In the choice feed-
ing assays, L. rhomboides ate nearly 10 times more 
G. vermiculophylla than U. lactuca, showing a sig-
nificant preference for the non-native seaweed (paired 
t-test: t7 = −4.51, p < 0.01; Fig. 3b).

Nutrient enrichment assays

Fish Consumer In the no-choice feeding assays, L. 
rhomboides consumed similar amounts of G. ver-
miculophylla in the enriched (0.46 ± 0.12  g wm, 
mean ± SE) and non-enriched (0.39 ± 0.11  g wm) 
treatment levels over the 72  h assays (paired t-test: 
t9 = 0.48, p = 0.65; Fig.  4a). However, in the choice 
feeding assay, L. rhomboides consumed twice as 
much of the enriched G. vermiculophylla, eating 
0.31  g wm (± 0.04) of the enriched seaweed versus 
0.13  g wm (± 0.04) of the non-enriched seaweed 
(paired t-test: t9 = 2.90, p = 0.02; Fig. 4b).

Epifaunal Invertebrate Consumer At the end 
of the 7  day no-choice assay, A. valida consumed 

similar, minimal amounts of non-enriched G. vermic-
ulophylla (0.03 ± 0.03 g wm, mean ± SE) as enriched 
(0.05 ± 0.03 g wm) or freshly collected (0.03 ± 0.02 g 
wm) G. vermiculophylla, with no significant differ-
ence among the treatment levels (One-Way ANOVA: 
F2,31 = 0.32, p = 0.73; Fig. 5). The lack of differences 
between the laboratory grown treatment level and 
the freshly collected treatment level, suggests that 
the laboratory conditions did not affect amphipod 
feeding.

Discussion

Understanding how an introduced primary producer 
is incorporated into a recipient food web is essential 
to predict its effects on ecosystem structure and func-
tion (e.g., Byers et al. 2010; Pintor and Byers 2015). 
In our system, both consumer identity and seaweed 
nutrient content determined the fate of non-native 
G. vermiculophylla within feeding assays. In the 
absence of a native seaweed (U. lactuca), mud crab 
E. depressus and pinfish L. rhomboides consumed 
G. vermiculophylla. However, the pinfish L. rhom-
boides consumed 7 times more G. vermiculophylla 

Fig. 3   Amount of biomass (g wm) of native (Ulva lactuca) 
and non-native (Gracilaria vermiculophylla) seaweed con-
sumed by pinfish, Lagodon rhomboides, in the (a) no-choice 
(n = 4) and in the (b) choice (n = 8) feeding assays. In the 
no-choice feeding assays, the fish were offered ~ 1.0  g of one 
seaweed species; while in the choice feeding trials, fish were 
offered ~ 1.0 g of each species. Assays ran for 2 days. Grey rep-
resents the U. lactuca treatment level, and white represents the 

G. vermiculophylla treatment level. The box and whisker plots 
represent the median (midline) and third and first quartiles 
(75th and 25th percentiles). The upper and lower dashed lines 
illustrate the maximum and minimum values up to 1.5 times 
the interquartile range; data points beyond that interval are rep-
resented as outliers (white dots). * indicates treatment levels 
that differed significantly
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than E. depressus, and within a shorter time frame. 
L. rhomboides was also the only consumer species 
to demonstrate a preference for the non-native sea-
weed over the native seaweed. The fish also preferred 
G. vermiculophylla when it was enriched. Thus, we 
provide insights about how G. vermiculophylla may 
be incorporated into the food webs of southeastern 
USA estuaries.

Seaweeds are important resources for generalist 
consumers in nearshore systems; however, non-native 
seaweeds can be less useful to native consumers 
given mismatched palatability. Although G. vermicu-
lophylla provides an abundant resource, the common 
invertebrates, mud snail I. obsoleta and mud crab E. 
depressus, preferred native U. lactuca when given 
a choice. Within the same system, another common 
epifaunal invertebrate, the amphipod Gammarus 
mucronatus, similarly prefers to eat native Spartina 
alterniflora detritus over G. vermiculophylla (Wright 
et al. 2014). Our results also reflect studies from other 
regions of the G. vermiculophylla invasive range, in 
which native herbivores preferred native seaweeds 
over the introduced seaweed (Weinberger et al. 2008; 
Nejrup et  al. 2012; Hu and Juan 2014) – a pattern 
attributed to high concentrations of wound-activated 

Fig. 4   Amount of Gracilaria vermiculophylla biomass (g 
wm) consumed by Lagodon rhomboides during (a) no-choice 
and (b) choice feeding assays. G. vermiculophylla treat-
ment levels were nutrient-enriched (n = 10) and non-enriched 
(n = 10). In the no-choice feeding assays, the consumers were 
offered ~ 1.0 g of one enrichment treatment level; while in the 
choice feeding assay, fish were offered ~ 1.0 g of each enrich-
ment treatment level. Assays ran for 3  days. Grey represents 

the nutrient-enriched treatment level, and white represents the 
non-enriched treatment level. The box and whisker plots rep-
resent the median (midline) and third and first quartiles (75th 
and 25th percentiles). The upper and lower dashed lines illus-
trate the maximum and minimum values up to 1.5 times the 
interquartile range; data points beyond that interval are repre-
sented as outliers (white dots). * indicates treatment levels that 
differed significantly

Fig. 5   Amount of Gracilaria vermiculophylla biomass 
consumed (g wm) by amphipods, Ampithoe valida, in the 
no-choice assay. G. vermiculophylla treatment levels were 
nutrient-enriched (n = 12), non-enriched (n = 11), and freshly 
collected (n = 11). Amphipods were offered ~ 0.5  g of G. ver-
miculophylla. Assays ran for 7 days. Data were analyzed using 
ANOVA. Light grey represents the nutrient-enriched treatment 
level, white represents the non-enriched treatment level, and 
dark grey represents the freshly collected treatment level. The 
box and whisker plots represent the median (midline) and third 
and first quartiles (75th and 25th percentiles). The upper and 
lower dashed lines illustrate the maximum and minimum val-
ues up to 1.5 times the interquartile range; data points beyond 
that interval are represented as outliers (white dots). * indicates 
treatment levels that differed significantly
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and inducible chemical defenses produced by the non-
native populations of G. vermiculophylla (Nylund 
et al. 2011; Hamman et al. 2013; but see Bippus et al 
2018). Though U. lactuca is chemically defended, the 
native seaweed produces secondary compounds that 
are qualitatively different from those of G. vermiculo-
phylla. U. lactuca produces dimethylsulphoniopropi-
onate (DMSP) (Stefels 2000; Van Alstyne and Puglisi 
2007), while G. vermiculophyllum produces oxylipins 
(Nylund et al. 2011; Rempt et al. 2012). Given their 
sympatry with U. lactuca, the studied invertebrates 
may have evolved tolerances to U. lactuca’s chemi-
cal defense compounds, making the native seaweed 
a more palatable resource (Sotka and Hay 2002). In 
fact, DMSP and its biproducts can promote consump-
tion by some native invertebrate consumers (Van 
Alstyne and Puglisi 2007). To understand the mecha-
nisms behind the invertebrates’ preferences for the 
native seaweed, feeding assays that isolate the chemi-
cal, nutritional, and physical differences between U. 
lactuca and G. vermiculophylla should be conducted.

In contrast to the invertebrates, pinfish L. rhom-
boides preferred to consume G. vermiculophylla over 
the native U. lactuca. Though this result has not pre-
viously been reported in our system, studies of other 
non-native seaweeds have found that they can be con-
sumed by native grazers, occasionally at rates similar 
to consumption of native seaweeds (e.g., Rossi et al. 
2009; Cacabelos et  al. 2010; Bulleri and Malquori 
2015). Not only did L. rhomboides prefer G. ver-
miculophylla, but the fish rapidly consumed on aver-
age nearly 10 times more of the non-native seaweed 
than the native seaweed in the choice assay. Previous 
research has documented rapid grazing of Gracilaria 
spp. by herbivorous fish in comparison to brown and 
green seaweeds (Ganesan et al. 2006). In our system, 
the rapid consumption of G. vermiculophylla by pin-
fish suggests that they are a plausible candidate for 
future experiments exploring top-down influences on 
the non-native seaweed.

In addition to differences between consumer spe-
cies in their consumption of native versus non-native 
seaweeds, we observed differences in the role of 
nutrient content. In the no-choice trials, the amphipod 
A. valida and pinfish L. rhomboides consumed similar 
amounts of nutrient-enriched versus non-enriched G. 
vermiculophylla. However, L. rhomboides consumed 

significantly more enriched seaweed when presented 
with a choice between non-enriched and enriched 
G. vermiculophylla. One possible explanation of the 
difference between A. valida and L. rhomboides con-
sumption of nutrient-enriched resources may lie in 
differences in nutritional requirements between the 
consumer species. Herbivores are generally nutri-
ent limited, and thus the nutrient content of primary 
producers can dictate herbivore food selection (Matt-
son 1980; Hay 1991; Sterner and Hessen 1994; Elser 
et al. 2001; Fink and Von Elert 2006; Kraufvelin et al. 
2006). However, organisms require different amounts 
of energy and nutrients based on their specific physi-
ological constraints (Sterner and Elser 2002; Sterner 
and Hessen 1994). For example, herbivorous fishes 
must process large amounts of carbon to meet their 
nitrogen and phosphorus requirements (Hay 1991; 
Hood et  al. 2005), suggesting that our additions of 
nitrogen and phosphorus may have improved the 
nutritional value for L. rhomboides. In fact, L. rhom-
boides have exhibited similar nutrient-driven con-
sumption of seagrass Halodule wrightii (Heck et  al. 
2006), further illustrating the importance of high-
nutrient food items in pinfish diets. Although the 
nutrients enhanced in our study appear to stimulate 
L. rhomboides feeding, enriched and unenriched G. 
vermiculophylla was consumed at statistically equiva-
lent rates by A. valida. This may reflect the possibil-
ity that nutritional value of enriched and unenriched 
G. vermiculophylla are of similar magnitude to A. 
valida.  The congeneric A. longimana similarly does 
not select seaweed based on nutritional value because 
compensatory feeding behavior allows the amphipod 
to make up for lower nutritional values (Cruz-Rivera 
and Hay 2001).

A second explanation relates to the palatability 
of the seaweed. Nutrient availability can control the 
production of chemical defenses (Stefels 2000). For 
instance, DMSP content can be inversely related 
to nitrogen availability in the environment (Stefels 
2000), while terpenoid metabolites can increase with 
nitrogen enrichment (Cronin and Hay 1996). If the 
concentrations of secondary compounds in G. ver-
miculophylla are linked to nutrient availability, the 
potential benefit of increased nutrient content for 
invertebrates may be outweighed by this chemical 
deterrence. Thus, our results suggest that the suite 
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of herbivores present and the nutrient conditions 
within a recipient ecosystem may be important driv-
ers in the incorporation of non-native seaweeds into 
recipient food webs. Further investigation is needed 
to clarify the ecological mechanisms (e.g., herbivore 
nutrient limitation and chemical defenses) behind 
the observed differences in consumption of nutri-
ent-enriched G. vermiculophylla between consumer 
types.

Although the present study increases our knowl-
edge of which species consume G. vermiculophylla 
in Georgia estuaries, we do not know the long-term 
effects of the seaweed’s consumption on native grazer 
fitness. Consumption of non-native seaweeds has 
been linked to degraded metabolic and physiological 
conditions of both native invertebrate and fish graz-
ers (e.g., Scheibling and Anthony 2001; Gollan and 
Wright 2006; Lyons and Scheibling 2007; Felline 
et al. 2012). For instance, the invasive seaweed Caul-
erpa racemosa causes reduced growth in sea urchins, 
Paracentrotus lividus (Tomas et al. 2011) and cellular 
and physiological alterations in white sea bream, Dip-
lodus sargus (Felline et al. 2012), which may lead to 
reduced fitness and stocks over the long-term. Much 
like L. rhomboides in the present study, D. sargus and 
P. lividus prefer non-native C. racemosa to native sea-
weeds and other invasive seaweeds. For these native 
Mediterranean grazers, their preferences of the inva-
sive seaweed suggest a mismatch between preference 
and fitness consequences that elucidates an ecological 
trap for the native grazers. This is a critical scenario 
to consider for G. vermiculophylla in southeastern 
estuaries. Therefore, we need research on the fitness 
consequences of G. vermiculophylla consumption 
on L. rhomboides to determine the overall positive 
or negative effect of the novel resource on consumer 
populations within this ecosystem.

Conclusion

Despite the potential of G. vermiculophylla to provide 
a novel, abundant primary resource within southeast-
ern USA estuaries, we observed varied utilization 
of the non-native seaweed depending on consumer 

identity and seaweed nutrient content. Nonetheless, 
the mixed effects of G. vermiculophylla on grazer 
consumption highlights the need for more research on 
trophic interactions with non-native seaweeds glob-
ally. Furthermore, assessing the consumption of non-
native seaweeds across an array of consumer species, 
macroalgal traits, and seasons will provide a more 
realistic illustration of seaweed-grazer interactions. 
Given that non-native seaweed species continue to be 
introduced across the world, more detailed analyses 
of their influence on trophic dynamics are necessary.
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