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1.  INTRODUCTION

Disturbances are often positively associated with
the establishment and spread of invasive species
(Lockwood et al. 2013, Jauni et al. 2015). Distur-
bances that remove or damage resident species
can facilitate invasion by creating empty niches and
lessening competition with resident species (Sousa
1984, Besaw et al. 2011). For example, wind, light-
ning, or logging disturbances create canopy gaps
in forested landscapes that increase light availabil-
ity and promote plant invasion (Appleby 1998,
Gravel et al. 2010). Similarly, disturbances can also
aid invader establishment by removing native pre -
dators, parasites, or competitors that provide biotic

resistance to invasion (Kotanen 1997, Lafferty &
Kuris 2005) or by creating environmental condi-
tions that favor invaders over natives (Byers 2002,
Ruhí et al. 2016). Disturbances can also disperse
exotic propagules to new locations and facilitate
their colonization of previously inaccessible areas;
for instance, floods transport invasive plant seeds
to new riparian plant communities (Thébaud &
Debussche 1991). Although positive associations
between disturbance and invasion are well-docu-
mented, disturbance can also impede invasion by
harming invaders, hindering their dispersal, or
perhaps by disrupting facilitative interactions with
resident species (Smith & Knapp 1999, Flynn et al.
2010).
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Hurricanes are large-scale disturbances that can
facilitate invasive species by increasing dispersal
and enhancing establishment (Diez et al. 2012).
Hurricanes disperse plants and animals long dis-
tances through extreme movements of wind and
water (Censky et al. 1998). For example, hurricane
disruption of ocean currents transported invasive
lionfish larvae across the straits of Florida (USA) to
the Bahamas (Johnston & Purkis 2015). Hurricanes
can also facilitate species establishment and spread
by increasing resource availability or reducing
biotic re sistance (Bellingham et al. 2005, Bhattarai &
Cronin 2014). For example, after Hurricane Andrew,
in creased light availability in disturbed canopy gaps
enabled non-native plant species to invade Florida
hardwood forests (Horvitz et al. 1998). Although
many studies show that hurricanes facilitate species
invasions (Lynch et al. 2009, Steiner et al. 2010,
Henkel et al. 2016), a few examples demonstrate
that hurricanes can also hinder invasion by increas-
ing invader mortality (Palmer et al. 2007, Flynn et
al. 2010). We suggest that hurricanes could further
inhibit invasion by limiting dispersal or disrupting
facilitative interactions between residents and
invaders.

Mangroves are expanding into salt marshes along
the northeast Florida coast (Cavanaugh et al. 2014),
and this system provides an opportunity to examine
effects of hurricane disturbance on an ongoing spe-
cies invasion. Specifically, hurricanes could alter
recruitment of the range-expanding black mangrove
Avicennia germinans, deposition patterns of the
dead litter (wrack) of the resident salt marsh species
Spartina alterniflora, and the association of these 2
species. Here, recruitment refers to the process by
which unrooted, buoyant mangrove propagules
establish in high intertidal habitats. At the leading
edge of the mangrove expansion, estuarine tides and
currents deposit both mangrove propagules and salt
marsh wrack in high intertidal salt marsh habitats
(Smith et al. 2018); aggregations of propagules and
wrack often mark the location of the high tide water
line. Wrack alters local light, moisture, and salinity
conditions (Brewer et al. 1998, Pennings & Richards
1998, Tolley & Christian 1999), and facilitates man-
grove establishment by rafting mangrove propagules
into the marsh and retaining them in place until they
root (Smith et al. 2018, Smith 2019). Hurricanes can
relocate large quantities of wrack to upland environ-
ments (Gunter & Eleuterius 1971, Hackney & Bishop
1981), and we hypothesized that hurricane storm
surge could directly disrupt mangrove recruitment
by moving wrack and associated propagules to

upland environments that are outside of propagules’
environmental niche. We also ex pected that wrack
removal could indirectly inhibit mangrove propag-
ules by decreasing propagule retention if wrack is
no longer present in intertidal areas to facilitate
propagules (Smith et al. 2018). Furthermore, because
wrack smothers underlying vegetation in the high
intertidal, wrack removal could expose bare patches
 without vegetated structure. This unfavorable bare
microhabitat could retain fewer propagules and
reduce seedling establishment relative to vegetated
areas.

To examine how hurricane disturbances affect
mangrove recruitment, salt marsh wrack deposition,
and the association of mangroves and wrack, we per-
formed monthly field surveys before and after 2 hur-
ricane landfalls. We counted mangrove propagules
and seedlings in different salt marsh microhabitats in
invaded (adult mangroves present) and uninvaded
(no adult mangroves) salt marshes in northeast
Florida from 2015 to 2017. Overall, these surveys
quantified how 2 hurricane disturbances affect in -
vader recruitment and establishment via direct and
indirect effects on interacting resident and invading
species.

2.  MATERIALS AND METHODS

2.1.  Site selection

We identified 4 sites located within a 20 km stretch
of the Matanzas River estuary, St. Augustine, Florida,
that had distinct wrack lines in high intertidal salt
marshes (Table S1 & Fig. S1 in the Supplement at
www. int-res. com/ articles/ suppl/ m644 p065 _ supp. pdf).
The Matanzas Estuary encompasses the present
northern edge of the range-expanding black man-
grove’s distribution (Williams et al. 2014). Black man-
groves were the only mangrove species present at
our field sites, and within the estuary there is local
scale variation in black mangrove invasion of salt
marshes. We divided 3 of the sites into 5000 m2

paired blocks of mangrove invaded (adult man-
groves present) and uninvaded salt marsh areas (no
adult mangroves present) that were separated by
50−1000 m (Fig. S2 in the Supplement). The predom-
inant plant species in both areas was the marsh cord-
grass Spartina alterniflora; invaded areas also con-
tained at least 100 m2 of adult mangrove vegetation.
The fourth site included only an invaded area
because no comparable uninvaded area was located
within 1000 m.

66

https://www.int-res.com/articles/suppl/m644p065_supp.pdf


Smith et al.: Hurricanes indirectly affect mangrove invasion

2.2.  Baseline surveys

In 2015, we established perpendicular transects
from the upland forest to the lower marsh edge at all
sites. To spread sampling effort across the entire
study area, we spaced 5 transects at 10 m intervals in
the invaded and uninvaded areas of each site. We
marked transect starting points where the high
marsh met the upland forest edge for future resam-
pling (Fig. S2). We then collected all wrack present in
one 0.25 m2 quadrat from where the dominant wrack
line intersected each perpendicular transect in
invaded and uninvaded areas at 1 site each in August
and December 2015 (Sites 1 and 2; Table S1). We
dried the wrack at 70°C until the samples reached a
constant mass (7−14 d) and weighed the dry mass.
We also measured the wrack line distance to the
upland (WDU) at each point where the dominant
wrack line intersected with the perpendicular tran-
sects. In November 2015, we also placed a transect
parallel to the water’s edge along the dominant
wrack line and sampled mangrove propagules in
0.25 m2 quadrats from wrack and adjacent vegetated
microhabitats along each horizontal transect line at
the same 2 sites (n = 10 per area at Site 1; n = 5 per
area at Site 2; Fig. S2). For the wrack quadrats, we
collected, dried, and weighed salt marsh wrack bio-
mass as described above.

2.3.  Hurricanes Matthew and Irma

Florida has had the most direct hurricane hits of
any US state, and hurricanes disturb the Florida coast
on a time scale of years to decades (Blake & Gibney
2011). In October 2016, Hurricane Matthew moved
from the tropical Atlantic up the east coast of Florida
and brought winds of 135−170 km h−1 to the northern
Florida region. The Matanzas River measured a
record-high storm surge of 2.13 m above mean higher
high water (MHHW) (Stewart 2017). Eleven months
later in September 2017, Hurricane Irma made land-
fall in southwestern Florida and passed through cen-
tral Florida into southeast Georgia. On the northeast
Florida coast, winds of up to 80 km h−1 created storm
surge that measured 1.46 m above MHHW at the
Matanzas River (Cangialosi et al. 2018).

2.4.  Post-hurricane surveys

Storm surge from Hurricane Matthew arrived at
our field sites on 7 October 2016. Starting on 22 Octo-

ber 2016, we conducted monthly field surveys of salt
marsh wrack and mangrove propagule abundance
until December 2017. Storm surge from Hurricane
Matthew removed salt marsh wrack from the inter-
tidal zone and left behind bare areas at each site that
demarcated where the wrack line had smothered
and killed the underlying vegetation (Fig. 1a,b). For
all sites, we measured the pre-Matthew WDU (m) at
each point where a bare patch intersected with the
permanent perpendicular transect lines from the
2015 baseline surveys to establish a WDU that was
specific to each site and transect line (Table S1,
Fig. S2). We then examined (1) mangrove propagule
retention and seedling establishment in intertidal
microhabitats where wrack had been removed by the
hurricane and (2) mangrove propagule retention in
new wrack lines deposited after Hurricane Matthew.

To target microhabitats where Hurricane Matthew
removed wrack from intertidal areas, 2 wk after the
hurricane we established 30 × 1 m fixed horizontal
transects along the pre-Matthew wrack line in both
invaded and uninvaded areas. We counted man-
grove propagules in 0.25 m2 quadrats haphazardly
placed in patches of bare sediment and adjacent
 vegetation (n = 10 each) along each fixed transect
(Fig. S2). Beginning in January 2017, we also
counted mangrove seedlings from the 2016 propag-
ule cohort that established after Hurricane Matthew
in the quadrats. We identified seedlings as members
of the 2016 cohort based on the number of stem
nodes and the presence of cotyledons in the months
after establishment.

We also sampled within new intertidal wrack
deposits to assess wrack characteristics and to exam-
ine the association between salt marsh wrack and
mangrove propagules. In contrast to the measure-
ments taken from bare and vegetated patches along
the fixed horizontal transect line, the location of this
wrack sampling shifted between sampling events
based on the location of the dominant wrack line. If
more than 1.5 m2 of new wrack was present, we
counted mangrove propagules in 0.25 m2 quadrats
(n = 5) placed haphazardly along a transect set up
along the newly deposited wrack line (Fig. 1c,d;
Fig. S2). Transect length varied based on the length
of the wrack line, but did not exceed 30 m.

To quantify properties of the newly deposited salt
marsh wrack, we collected, dried, and weighed the
wrack biomass for each quadrat as described above.
We also recorded the maximum wrack depth (cm) of
each wrack line in each invaded and uninvaded area
and the new WDU of each wrack line where it inter-
sected with permanent perpendicular transect lines
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established during the 2015 baseline surveys. When
storm surge from Hurricane Irma arrived at our field
sites on 11 September 2017, it deposited large wrack
lines landward from the marsh (Fig. 1e,f). Thus, during
our post-Irma sampling event on 21 September 2017,
we sampled both the hurricane-deposited wrack line
in the upland and wrack lines that had been deposited
in intertidal areas in the 10 d since Irma.

2.5.  Analysis

We used the ‘lme4’ package in R (version 3.5.2) to
create separate generalized linear mixed models to
examine propagule abundance as a function of

microhabitat (bare sediment, vege-
tated, wrack) for the invaded and
uninvaded areas during the peak
propagule recruitment season
(October to December) for each
year (2016, 2017) (Bates et al. 2015,
R Core Team 2017). We defined the
peak re cruitment season as months
where propagules were present at
all sites. Wrack was absent from all
sites during the 2016 propagule
recruitment season, so we only
assessed bare sediment and veg -
etated quadrats for 2016. For
seedlings, we analyzed differences
in abundance for January 2017 (i.e.
after the 2016 propagule recruit-
ment season) as a function of
microhabitat (bare sediment, vege-
tated) using 2 separate generalized
linear mixed models for the in -
vaded and uninvaded areas. We
fit all propagule and seedling
abundance models with Poisson
distributions, tested for overdisper-
sion, and re-fit the models with
negative binomial distributions if
the data were overdispersed. All
models included site as a random
intercept.

To assess variation in wrack dep-
osition location based on marsh
invasion status, we used a linear
mixed model fit with a Gaus -
sian distribution to examine pre-
Matthew WDU as a function of
marsh invasion status (invaded,
uninvaded), including site as a ran-

dom intercept. We also used linear mixed models to
examine whether the wrack lines deposited in the
terrestrial upland during Hurricane Irma differed
from wrack lines deposited in intertidal areas at the
prior sampling date (August 2017) in terms of wrack
biomass density, change in wrack line distance from
the upland (ΔWDU), and wrack depth. To examine
whether wrack was deposited in similar locations
before and after hurricanes, we calculated ΔWDU
from the pre-Matthew WDU measured along the
same perpendicular transect line to relativize each
new wrack line to the location of the pre-Matthew
wrack line. Measuring ΔWDU from its original posi-
tion on each transect line accounted for locally influ-
ential factors related to transect location and site
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Fig. 1. Bare patches left behind after wrack removal by Hurricane Matthew in (a)
mangrove-invaded and (b) uninvaded salt marsh areas. Wrack lines that returned
in March 2017 after Hurricane Matthew for (c) invaded and (d) uninvaded salt
marsh areas. Wrack lines deposited in upland (e) residential and (f) terrestrial
 forest habitats after Hurricane Irma. Dashed lines mark the lower edge of the 

wrack lines. Photos by R.S. Smith
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characteristics. We fit a separate model for invaded
and uninvaded areas for each wrack response vari-
able (biomass density, ΔWDU, depth) as a function of
wrack line location (intertidal marsh, terrestrial
upland). We fit each model with a Gaussian distribu-
tion and included site as a random intercept. We
checked residual plots and where necessary, square
root transformed wrack response variables to meet
assumptions of normality and homogeneity.

3.  RESULTS

Propagule abundance exhibited a distinct season-
ality that began in September, peaked from October
to December, and then ended in January (Fig. 2a).
Mangrove propagules and seedlings were more
abundant in invaded areas compared to uninvaded
areas (Fig. 2). Propagule abundance also varied by
microhabitat. In fall 2016, wrack was not present in
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Fig. 2. Means ± SE of mangrove (a) propagules and (b) seedlings in 0.25 m2 quadrats in intertidal microhabitats from monthly
surveys in 4 mangrove-invaded and 3 uninvaded areas for 15 mo following Hurricane Matthew (vegetated, n = 10; bare sedi-
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Dashed lines represent the timing of Hurricanes Matthew (6 October 2016) and Irma (11 September 2017)
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intertidal locations, and about twice as many propag-
ules were present in vegetated patches compared to
bare patches in both invaded (χ2 = 12.59, df = 1, p =
0.00039) and uninvaded areas (χ2 = 8.50, df = 1, p =
0.0036; Table S2). Wrack was present during the
propagule recruitment season in fall of 2017; propag-
ules were 6 to 10 times as abundant in wrack com-
pared to bare or vegetated patches in invaded areas
(χ2 = 205.28, df = 2, p < 0.0001; Table S2) and 3 to 9
times more abundant in wrack in uninvaded areas
(χ2 = 72.85, df = 2, p < 0.0001; Table S2). In January
2017, twice as many seedlings were present in vege-
tated patches compared to bare patches in invaded
(χ2 = 7.38, df = 1, p = 0.0066) and uninvaded areas
(χ2 = 5.61, df = 1, p = 0.018); however, overall seedling
abundance was low in uninvaded areas (<1 seedling
per 0.25 m2; Table S2). Seedling abundance of the
2016 cohort was maintained throughout the year
(Fig. 2b; Table S2).

Before Hurricane Matthew, wrack in invaded areas
was deposited on the waterward edge of adult man-
grove vegetation, whereas wrack in uninvaded areas
was deposited at the upland border between high
marsh and forest vegetation. Thus, wrack in invaded
areas was deposited significantly farther from the up-
land (41.59 ± 6.12 m; mean ± SE) relative to
uninvaded areas (13.69 ± 2.36 m; mean ± SE; χ2 =
37.25 df = 1, p < 0.0001; Table S1). In October 2016,
Hurricane Matthew relocated wrack from intertidal
areas to upland terrestrial locations at all sites
(Fig. 1e,f), although we did not quantify these upland
deposits. Wrack did not return to salt marsh areas un-
til January 2017 (Fig. 3a). Wrack accumulated regu-
larly throughout the rest of the year, and its location
was nearly identical to the pre-Matthew WDU until
September 2017, when storm surge from Hurricane
Irma again exported wrack from the intertidal (Fig. 3a).
Irma established a new wrack line 42.05 ± 13.12 m
(mean ± SE) landward from the pre-Matthew WDU in
invaded areas and 33.72 ± 5.80 m landward from the
pre-Matthew WDU in uninvaded areas (Fig. 3a).
These hurricane-deposited wrack lines were located
12.68 ± 6.65 m landward from the upland-marsh edge
in invaded areas and 15.90 ± 4.13 m landward from
the upland-marsh edge in uninvaded areas in terres-
trial forest, roadside, and residential locations (Fig.
1e,f). This new wrack line was located significantly
upland relative to the previous month’s wrack line lo-
cation in invaded (χ2 = 22.01, df = 1, p < 0.0001) and
uninvaded areas (χ2 = 46.75, df = 1, p < 0.0001). We
also collected more than 3 times the wrack biomass
density from the hurricane-deposited upland wrack
line compared to the previous month’s intertidal

wrack line in both invaded (χ2 = 9.55, df = 1, p = 0.002)
and uninvaded areas (Fig. 3b; χ2 = 31.01, df = 1, p <
0.0001). The upland wrack line was also more than 6
times deeper than the prior month’s intertidal wrack
line in invaded areas (χ2 = 6.47, df = 1, p = 0.011) and
more than 2 times deeper in uninvaded areas (Fig. 3c;
χ2 = 8.42, df = 1, p = 0.0037). New wrack was de-
posited in intertidal areas within 2 wk of Irma (Fig. 3).

4.  DISCUSSION

Although disturbances are well known to directly
and positively affect invasions, we found that hurri-
canes can negatively and indirectly affect an ongoing
invasion. Black mangrove propagule recruitment,
resident salt marsh wrack deposition, and the
Atlantic hurricane season temporally and spatially
overlap in northeast Florida. We found that salt
marsh wrack retained up to 10 times more mangrove
propagules relative to vegetated and bare intertidal
microhabitats. However, hurricane storm surge
exported salt marsh wrack from intertidal locations
and deposited it in the terrestrial upland. Although
hurricanes did not appear to directly affect mangrove
propagules or uproot seedlings, they indirectly influ-
enced propagule and seedling success by removing
wrack from intertidal areas. Wrack was no longer
present in the intertidal to retain mangrove propag-
ules in high abundance after hurricanes, and the
export of wrack to the upland uncovered intertidal
bare patches that retained fewer propagules. Re -
duced propagule retention likely contributed to
lower seedling densities in bare patches in subse-
quent seasons relative to vegetated habitats. The
magnitude of hurricane effects on the mangrove
expansion likely depends on the amount of time that
wrack is absent from intertidal areas.

The Atlantic hurricane season lasts from 1 June to
30 November, and most hurricanes occur in Septem-
ber and October (Blake & Gibney 2011), which coin-
cides with mangrove recruitment and salt marsh
wrack deposition. Mangrove propagule recruitment
began in September, peaked from October to
December, and ended in January, which matches the
timing of the propagule recruitment season in other
North American temperate areas (Van der Stocken et
al. 2017). We expected that the coincident timing of
hurricanes and propagule recruitment would directly
inhibit propagule dispersal by transporting man-
grove propagules to inhospitable upland environ-
ments, especially for the abundant propagules asso-
ciated with wrack. However, for the 2 storms that we
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documented, we did not observe strong direct effects
of storm surge on mangrove propagules in terms of
moving propagules to upland areas. Hurricane Irma
occurred prior to peak propagule release, and we did
not observe substantial propagule movement to the

upland as a result of the storm. In the first post-Irma
sampling event, mean propagule abundance in the
upland and intertidal wrack lines was less than 1
propagule per 0.25 m2 quadrat in both locations. We
expect that hurricanes could have stronger direct
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negative effects on mangrove propagule recruitment
when storms coincide with peak propagule dispersal.
Although Hurricane Matthew occurred closer to
peak recruitment than Irma, we did not quantify
propagule abundance in upland areas. Propagules
remained on adult mangrove trees after Hurricane
Matthew, and propagule abundances were similar in
vegetated microhabitats for the 3 observed propag-
ule seasons (Fig. 2a), which suggests that Matthew
did not substantially deplete the propagule supply.
Still, storm timing relative to propagule release likely
influences the magnitude of hurricane effects on
mangrove recruitment, and other studies have
observed reduced recruits and fewer reproductive
mangrove trees after hurricanes (Proffitt et al. 2006).
In addition to moving propagules to the upland,
extreme meteorological events are often associated
with long-distance seed dispersal (Reed et al. 1988,
Nathan et al. 2008), and the storms could have also
moved propagules and wrack offshore or to other
remote locations that we did not assess in our field
surveys (Roman & Daiber 1989, Li & Pennings 2016).

Although hurricanes did not appear to directly
affect mangrove propagules in our study, hurricane
removal of wrack from intertidal areas seemingly af-
fected mangrove recruitment and establishment indi-
rectly by temporarily disrupting the association be-
tween mangroves and salt marsh wrack. Because
wrack strongly facilitates propagule retention and
rooting (Smith et al. 2018), extended removal of wrack
from the system could minimize propagule establish-
ment in suitable intertidal areas. The duration of
wrack absence likely affects the degree to which hur-
ricanes could disrupt the wrack−propagule relation-
ship. Following Hurricane Matthew in October 2016,
no new wrack arrived in intertidal areas until January
2017, after the propagule recruitment season had
ended. Thus, facilitative effects of wrack were not re-
stored to the system during the propagule recruitment
season. In contrast, after Hurricane Irma in September
2017, salt marsh wrack returned to the system within
2 wk, perhaps due to lower storm surge or other dif-
ferences in hydrodynamic con ditions associated with
the storm. However, after Hurricane Irma, mangrove
propagules were more abundant in wrack compared
to other intertidal microhabitats for the remainder of
the 2017 propagule recruitment season. Additionally,
the export of wrack to upland habitats uncovered
bare patches in the intertidal that retained fewer
propagules relative to adjacent vegetation. The effect
of this reduction persisted as propagules developed
into seedlings, and mangrove seedling abundances
were also lower in bare sediment compared to vege-

tation (Fig. 2b). Propagules that retained and rooted
in intertidal areas generally survived as seedlings
over the 15 mo period; seedlings that established after
Hurricane Matthew were robust to the storm surge
and hydrodynamic forces associated with Hurricane
Irma, which suggests that seedlings had surpassed
sediment scouring and hydrodynamic establishment
thresholds (Balke et al. 2011, 2013). Hurricanes can
kill, defoliate, and uproot adult mangroves (Armen-
tano et al. 1995, Smith et al. 2009, Feller et al. 2015),
especially when trees are close to a storm’s eye wall
(Milbrandt et al. 2006). In our study, hurricanes ap-
peared to minimally affect seedling survival, likely
because storm surge covered mangroves and pro-
tected them from damaging winds (Smith et al. 1994,
2009, Armitage et al. 2020). Indeed, hurricanes could
even benefit seedlings by removing wrack, which can
inhibit seedlings by blocking access to light and at-
tracting herbivores (Smith 2019).

Hurricanes likely have larger effects on mangrove
recruitment in invaded areas due to differences in
propagule supply and wrack deposition patterns.
Mangrove propagules and seedlings were more
abundant in invaded areas, which suggests that local
propagule supply is important to mangrove ex pansion
into salt marshes. Although mangrove pro pagules can
travel substantial distances from their parent tree
(Nathan et al. 2008, Van der Stocken et al. 2018), most
propagule dispersal likely occurs within meters of
adult trees (Clarke 1993, Sousa et al. 2007). Thus, hur-
ricanes likely have larger effects on mangrove re-
cruitment in invaded areas with a proximate propag-
ule supply. In invaded areas, wrack was also located
farther from the upland, likely due to inter actions
among hydrodynamics, geomorphology, and physical
structures that deposit wrack in predictable locations
(Fischer et al. 2000, Alexander 2008). Pro pagules as-
sociated with wrack may experience different tidal
conditions in invaded areas that could  affect propag-
ule establishment; for example, propagules may be
less prone to desiccation, but more likely to be up-
rooted by hydrodynamic forces (McKee 1995, Balke et
al. 2011). We also observed greater landward move-
ment of intertidal wrack lines after Hurricane Irma at
invaded sites relative to uninvaded sites (Fig. 3a); it is
possible that fall king tides moved wrack closer to the
upland and that adult mangroves then trapped wrack
at these higher tidal elevations after the king tides.

In summary, although disturbances are often posi-
tively associated with invasion, we found that distur-
bance can negatively and indirectly affect invasion
by altering interactions between resident and invad-
ing species. Our work suggests that it is important to
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consider negative effects of disturbance on invasion;
in particular, disturbances that indirectly disrupt
invader dispersal or facilitative interactions between
resident and invading species are overlooked mech-
anisms that inhibit invasion. Additionally, in our sys-
tem, the intensity and frequency of hurricanes is
expected to increase over the coming decades (Mich-
ener et al. 1997), and black mangroves are predicted
to move north at a rate of 2.2−3.2 km yr−1 over the
next 50 yr (Cavanaugh et al. 2015) into areas with
larger salt marsh wrack inputs (Pennings & Richards
1998). As climate change and anthropogenic stres-
sors increasingly alter disturbance regimes, under-
standing how disturbances affect species invasions
can improve predictions of invasibility, rate of spread,
and ultimately, invader impact.
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