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SUMMARY

1. Two dominant drivers of species distributions are climate and habitat, both of which are changing

rapidly. Understanding the relative importance of variables that can control distributions is critical,

especially for invasive species that may spread rapidly and have strong effects on ecosystems.

2. Here, we examine the relative importance of climate and habitat variables in controlling the

distribution of the widespread invasive freshwater clam Corbicula fluminea, and we model its future

distribution under a suite of climate scenarios using logistic regression and maximum entropy

modelling (MaxEnt).

3. Logistic regression identified climate variables as more important than habitat variables in

controlling Corbicula distribution. MaxEnt modelling predicted Corbicula’s range expansion westward

and northward to occupy half of the contiguous United States. By 2080, Corbicula’s potential range

will expand 25–32%, with more than half of the continental United States being climatically suitable.

4. Our combination of multiple approaches has revealed the importance of climate over habitat in

controlling Corbicula’s distribution and validates the climate-only MaxEnt model, which can readily

examine the consequences of future climate projections.

5. Given the strong influence of climate variables on Corbicula’s distribution, as well as Corbicula’s

ability to disperse quickly and over long distances, Corbicula is poised to expand into New England

and the northern Midwest of the United States. Thus, the direct effects of climate change will

probably be compounded by the addition of Corbicula and its own influences on ecosystem function.
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Introduction

Changes in climate are already affecting species distribu-

tions in ecosystems throughout North America (Parme-

san & Yohe, 2003). Many researchers are using species

distribution modelling to examine how ranges may shift.

This approach has been criticised, however, because

most models have not included non-climate variables,

such as biotic factors such as competition and predation,

and abiotic factors such as habitat attributes, that could

themselves influence distributions (Woodward& Beerling,

1997; Pearson & Dawson, 2003; Jeschke & Strayer, 2008;

Zarnetske et al. 2012). We must understand the relative

importance of climate and non-climate variables in control-

ling present-day distributions to predict how climate

changes will affect species distributions.

Making accurate ecological forecasts is a critical part

of ecological research (Clark et al., 2001). Climate

changes are not occurring in isolation, but rather are

coupled with other stressors such as habitat loss and

land-use changes, eutrophication and invasive species.

To understand the overall impact of these changes, we

must also examine their interactions. Large changes in

the distribution and abundance of aquatic organisms are

predicted to occur over the next several decades (Wrona

et al., 2006). Understanding changes in distribution is

especially important for invasive species, because they

often are not yet at equilibrium, represent a significant

component of aquatic communities and can interact

strongly with native species (Cohen & Carlton, 1998;

Mack et al., 2000; Byers et al., 2002). The conceptual basis

for understanding how climate change could alter
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distributions and impacts of invasive species is well

developed (Hellmann et al., 2008; Rahel & Olden, 2008;

Strayer, 2010), but few specific predictions have been

made. Important topics to consider include quantifying

how an invasive species may begin to spread with

warming climate (Hellmann et al., 2008) and assessing

how these changes in distribution will affect aquatic eco-

systems. The development of a more detailed under-

standing of the response of invasive species to climate

change is thus critical to managing their impact and

limiting their further spread.

Freshwater molluscs are an ideal group on which to

focus because they provide important ecosystem services

such as filtration and nutrient uptake (Strayer et al.,

1999; Vaughn & Hakenkamp, 2001). Also, invasive fresh-

water molluscs have had major impacts on aquatic

ecosystems, including the New Zealand mud snail

Potamopyrgus antipodarum that dominates nutrient

cycling in western United States streams (Hall, Tank &

Dybdahl, 2003), zebra mussels (Dreissena polymorpha)

that remove phytoplankton and increase water transpar-

ency in the Great Lakes and the Hudson River (Caraco

et al., 1997; Hecky et al., 2004) and the golden mussel

Limnoperna fortunei that increases transparency and

decreases primary productivity in South American lakes

and reservoirs (Boltovskoy et al., 2009).

Of the common aquatic invaders in the contiguous

United States, the Asian clam Corbicula fluminea (here-

after Corbicula) is the most widely distributed (McMahon

& Bogan, 2001). Since it was first introduced to Wash-

ington State in 1938, Corbicula spread eastward in the

1950s and reached the southeastern United States in the

1960s (McMahon & Bogan, 2001). Corbicula has invaded

rivers throughout the United States, from southern New

York to Florida on the east coast of the United States,

west to Texas on the Gulf Coast and throughout the

Midwest and West Coast states (McMahon & Bogan,

2001). Corbicula can reach densities of several thousand

individuals per square metre (Cohen et al., 1984; Phelps,

1994; Cataldo & Boltovsky, 1999; Sousa et al., 2008b) and

can strongly affect river ecosystems. Documented effects

include decreasing phytoplankton concentrations, reduc-

ing rates of organic matter processing and reducing the

abundance of submerged aquatic vegetation through

indirect effects (Cohen et al., 1984; Lauritsen, 1986;

Phelps, 1994; Hakenkamp & Palmer, 1998).

The status of Corbicula as an invader that disperses

rapidly, presumably aided by some means of human-

mediated transport, makes it especially capable of invad-

ing new habitats as they become suitable. Therefore, it is

critical to understand how climate changes may alter the

ability of Corbicula to persist in new habitats. This study

uses two different modelling approaches to determine

the variables that control the distribution of Corbicula.

First, to compare the relative importance of climate and

habitat as predictors of Corbicula presence and absence,

we constructed logistic regression models that examine

all combinations of the predictor variables. Second, we

created a maximum entropy (MaxEnt) model that only

uses data on Corbicula presence and produces a continu-

ous, spatially explicit prediction of suitability. To create

this continuous prediction, the predictive variables must

be spatially continuous, and therefore, the model is lim-

ited to climate-related predictive variables. Results of the

model are then used to assess probably range expan-

sions of Corbicula in the United States over the coming

decades.

Methods

Modelling approaches

We modelled suitability of locations within the continen-

tal United States for Corbicula using a logistic regression

and a MaxEnt model. The logistic regression uses a gen-

eral linear model to determine the suitability of a loca-

tion using known presence and absence locations. A

logistic regression is ideal for modelling binary data,

such as presence and absence, as it has a higher power

than the analysis of transformed data (Warton & Hui,

2011). The logistic regression also allowed us to include

habitat variables, such as water chemistry and substrate

variables that were only available as discrete data

points, as well as discretised climate variables. By

including both climate and habitat variables, we could

test the importance of habitat and climate factors alone

and in combination. Logistic regression, however, is only

able to model habitat suitability for individual points;

sampling these points is labour intensive because true

presence and absence points are required, and the num-

ber of sites included is much lower than for the MaxEnt

model.

We also created a MaxEnt model, which is a machine-

learning approach that uses presence-only data and spa-

tially explicit data layers of predictive environmental

variables to model species distributions (Elith et al.,

2006). MaxEnt modelling outperforms other commonly

used species distribution models (e.g. GARP, BIOCLIM),

because it works well with incomplete data, small sam-

ple sizes and gaps, and therefore is well suited to mod-

elling work with invasive species (Jarnevich et al., 2006;

Kumar et al., 2009).
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MaxEnt has two major advantages over logistic regres-

sion. First, MaxEnt is able to use presence-only records,

allowing a much larger set of known Corbicula locations

to be used. Second, with the availability of spatially

explicit predictive climatic variables across a region,

MaxEnt directly produces a spatially explicit output that

describes how suitable an area is for Corbicula. Logistic

regression, in contrast, makes predictions for individual

points based on a broad range of site-specific habitat

information, but spatial gaps in data availability limit its

ability to produce a continuous spatial output. Because

we elected to create a continuous MaxEnt model using

climate variables, we cannot include the habitat data

because continuous habitat data are generally not avail-

able. Thus, unlike logistic regression, our MaxEnt model

cannot readily allow comparisons of the relative impor-

tance of habitat and climate variables. By combining

logistic regression and MaxEnt, however, by combining

logistic regression and MaxEnt, we were able to identify

habitat variables that influence Corbicula’s distribution

that could not be included in the MaxEnt model, quan-

tify the amount of variability in Corbicula’s distribution

that models looking only at climate factors on Corbicula

can explain and create spatially explicit predictions

about the potential distribution of Corbicula under future

climate scenarios.

Data sources

Corbicula locations. Data on known locations of Corbicula

came from two primary sources: the Environmental Pro-

tection Agency’s (EPA) Environmental Monitoring and

Assessment Program (EMAP) and the United States

Geological Survey’s Nonindigenous Aquatic Species

(NAS) Database. During the EMAP surveys, a total of

1392 stream sites in the coterminous United States were

sampled by EPA staff scientists and contractors with

identical methods during summer months in 2000–2004,

with most sampling occurring in 2003 and 2004. These

data are freely available for ecological modelling (Paul-

sen et al., 2008). The logistic regression can only use the

points from the EMAP surveys, as it requires true pres-

ence and absence points. For the MaxEnt model, we

combined the presence locations from the EPA EMAP

surveys and the USGS NAS Database, because unlike

logistic regression, a MaxEnt model does not require

true absence points. This allowed us to use the locations

from the USGS NAS Database, despite the lack of

known absence points associated with them, increasing

the overall number of Corbicula locations in the model

by an order of magnitude. Many locations within the

USGS NAS Database are clustered within small geo-

graphic areas. To prevent giving too much weight in the

MaxEnt model to small areas with many known Corbic-

ula locations, the list of known points was converted to

a raster with the same cell size as the predictive climate

variables using ArcCatalog (ESRI, Redlands, CA,

U.S.A.). This raster was then converted back to a list of

points. By doing this, we ensured that no single cell had

more than one location to it, reducing the total number

of Corbicula locations from over 3500 to approximately

2800.

Predictive variables. During EMAP sampling, a variety of

data were collected, including water quality, habitat

and substrate measurements (Table S1). These habitat

variables were only used for the logistic regression, as

they are not available for points in the USGS NAS Data-

base, nor are these variables available in a continuous,

spatially explicit data layer. Climate data were used as

predictive variables in both the logistic regression and

the MaxEnt modelling. We used BioClim variables, a set

of seventeen climate variables that provide a continuous

data layer of climatic variables that are interpolated

between weather stations. BioClim variables focus on

aspects that could control species distributions, such as

annual temperature, timing and amount of precipitation,

and extreme conditions such as high temperature in the

warmest month and low temperature in the coldest

month (Hijmans et al., 2005) (Table S2). Because the

logistic regression models specific points, rather than a

continuous geographic area, BioClim variable values

were extracted to the sampling points from the EMAP

surveys.

Multicollinearity between explanatory variables can

lead to inaccurate model parameterisation and the exclu-

sion of significant predictive variables (Graham, 2003).

To avoid multicollinearity among the predictive vari-

ables, pairwise Pearson’s correlation coefficients were

calculated for all combinations of the variables, and one

variable from any pair of variables with a Pearson’s cor-

relation coefficient greater than 0.7 (r2 > 0.49) was

removed from consideration (Moore & McCabe, 1993).

We selected the variable to remove based on biological

mechanisms. For example, calcium was highly correlated

with conductivity (q = 0.94); from this pair, conductivity

was removed, due to the documented importance of cal-

cium concentrations for other invasive shell-building

molluscs, such as the zebra mussel (Hinks & Mackie,

1991; Whittier et al., 2008).

For the logistic regression, 16 habitat variables were

retained following the removal of collinear pairs

© 2014 John Wiley & Sons Ltd, Freshwater Biology, 59, 847–857

Climate controls species distribution 849



(Table S1). For climate variables, which were used in

both logistic regression and MaxEnt modelling, four of

the original 17 remained following the removal of col-

linear variables (Table S1). No habitat variables were

collinear with climate variables. The four climate vari-

ables that remained were annual precipitation, precipi-

tation in the warmest quarter, precipitation in the

driest quarter and minimum temperature in the coldest

month. Maximum temperature in the warmest month

was initially considered as a predictive variable, as mass

mortality of Corbicula has been observed at high tempera-

tures (Cohen et al., 1984; Ilarri et al., 2011) and a warming

climate could increase temperatures beyond Corbicula’s

maximum temperature of 35 °C (McMahon & Bogan,

2001). However, in initial model runs that included

maximum temperature in the warmest month, there

was a positive correlation between maximum tempera-

ture in the warmest month and Corbicula presence.

Corbicula is sensitive to high water temperatures

(McMahon & Bogan, 2001), which can lead to mass

mortality events (Cohen et al., 1984; Ilarri et al., 2011),

and there is no clear mechanism as to why higher

maximum temperatures would lead to an increased

likelihood of Corbicula presence. More importantly, its

inclusion precluded the inclusion of a related, collinear

variable, namely minimum temperature in the coldest

month, which has a strong effect on Corbicula presence

and solid mechanistic underpinnings (Werner & Roth-

haupt, 2008). Thus, maximum temperature in the

warmest month was the collinear temperature variable

we excluded from the model.

Comparing habitat and climate variables: logistic

regression

To identify which individual variables should be

included, we conducted a stepwise regression in R

(R Development Core Team, 2008) and evaluated candi-

date models with AICc, a modified version of Akaike’s

Information Criterion (AIC) (Akaike, 1973) that is

adjusted to account for a finite sample size (Burnham &

Anderson, 2002). This model initially considered the 16

habitat variables and the four climate variables remaining

following the removal of collinear variables as described

above. From the results of the stepwise regression, a list of

candidate models was created using methods described

in Burnham & Anderson (2002). Using model weights,

variables that appeared in a total of 0.95 candidate models

by weight were identified and were classified as either

‘Habitat’ (from the EPA EMAP surveys) or ‘Climate’

(from BioClim variables).

To determine the relative importance of climate and

habitat variables in controlling Corbicula’s presence or

absence, three models were created: a model with only

habitat variables, a model with only climate variables

and a model with both climate and habitat variables.

These three models were compared using AICc, model

weights and pseudo-R2, calculated for the three different

models.

Spatially explicit, climate-only model: maximum entropy

model

We created the MaxEnt model with MaxEnt software

(version 3.3.3e, Phillips, Anderson & Schapire, 2006)

using the 2800 known locations of Corbicula from our

data sources. A MaxEnt model does not use known

absence points, instead it generates pseudo-absences

from a defined spatial area. This approach has been crit-

icised, especially when it includes areas that have not

been sampled or novel habitats (Peterson, Papes &

Eaton, 2007). However, given the extremely wide distri-

bution of Corbicula within the United States already and

because the points from the EPA EMAP surveys are part

of a systematic, nationwide survey of streams and rivers,

creating pseudo-absences from the entire continental

United States, avoids these issues (Phillips, 2007). Using

predictive variables input as a continuous ASCII grid,

the model fits the distribution of a species over the area

of the grid. A MaxEnt model uses several different

methods, including linear, nonlinear, hinge and thresh-

old functions, to fit the distribution of known points the

best possible way (Elith et al., 2006). MaxEnt creates a

model from the predictive variables; model results range

from zero to one and are interpreted using a priori

selected thresholds based on varying levels of permis-

siveness. For example, the ‘minimum training presence’

threshold is typically the lowest threshold and therefore

the most permissive threshold. Using this threshold, the

model output does not need to be very close to one in

order for the area to be deemed climatically suitable,

and thus it will classify a much larger area as suitable

for Corbicula than other, more stringent (higher) thresh-

olds. We selected three different thresholds to interpret

the MaxEnt model, ranging from liberal (equate entropy

of thresholded and original distributions) to conservative

(equal test sensitivity and specificity).

Using current climatic data, a MaxEnt model was cre-

ated using the four independent BioClim variables. If a

variable did not contribute significantly to the model fit,

as measured by per cent contribution to the overall

model fit and by permutation importance (a measure of
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how much the model is changed by random variation in

a given variable), that variable was removed from the

model, and the more parsimonious model was rerun.

Cross-validation was performed on five replicate Max-

Ent models, using 80% of the known Corbicula locations

to train the model and the remaining 20% to test the

model. Test data were sampled without replacement so

that each of the 2800 Corbicula locations was used in the

test set once and the training set four times. To prevent

over-fitting of the response curves of predictive vari-

ables, a regularisation multiplier of 10 was used. This

prevented the inclusion of complicated higher-order

polynomial functions that, despite fitting the data better,

produced response curves that were not biologically

meaningful.

We applied the MaxEnt model created using current

climate conditions and using the threshold values

described above, to three projections of climate in the

year 2080 corresponding to different emission scenarios:

A2a, which includes large human population growth,

large amounts of energy use and slow technological

change; A1b, which includes lower population growth,

high energy use and a mix of fossil fuel and other

energy sources; and finally the B2a scenario, which

includes medium population growth and a mix of

energy sources that are consistent with usage today

(Intergovernmental Panel on Climate Change (IPCC),

2007). These scenarios provide a range of projected tem-

perature increases by 2080, ranging from 2.4 C (B2a) to

3.4 C (A2a) (Intergovernmental Panel on Climate Change

(IPCC), 2007). Although this is not the full range of pro-

jected temperature rise predicted by other models, the

selected climate data have a consistent, simple, straight-

forward methodology for spatial downscaling (Delta

Method) and use the same source model (Canadian Cen-

tre for Climate Modelling and Analysis) while varying

only human population and energy sources.

Results

Comparing habitat and climate variables: logistic

regression

Stepwise regression identified nine variables that

appeared in more than 95% of candidate models, by

weight. Six were habitat variables (water depth, ammo-

nium, pH, per cent fine gravel, total suspended solids

and per cent agriculture in the catchment), and three

were climate variables (minimum temperature in the

coldest month, annual precipitation and precipitation in

the driest quarter) (Table 1). When comparing the

relative importance of the six habitat variables and three

climate variables, the combined model, which included

all nine variables, had the best fit for Corbicula presence

and absence from the EPA EMAP data, as measured by

AIC, area under the curve (AUC) and pseudo-R2 (Fig. 1,

Table 2). However, the climate model performed nearly

as well, whereas the habitat-only model lagged behind

both of the other two candidate models in all measures

of fit (Table 2).

Spatially explicit, climate-only model: maximum entropy

model

The final MaxEnt model included three climatic

variables: minimum temperature in the coldest month,

precipitation in the warmest quarter and precipitation

in the driest quarter (Table S2). Initial runs of the

MaxEnt model indicated that annual precipitation, one

of the four a priori climate variables initially considered

(Table S2), was not a significant predictor of Corbicula

presence or absence. Annual precipitation was removed

from the model, and a final model was run. From the

final model run, the replicates had an average AUC of

0.762 (out of one) for the test data, with a standard

Table 1 Variables selected in stepwise regression of Corbicula

presence. Habitat variables are from the EPA EMAP surveys, and

climate variables are from the BioClim data set. All variables in this

list appeared in more than 0.95 of models, by weight. The effect

that an increase in the variable has on the likelihood of Corbicula

presence is indicated in parentheses

Habitat Climate

Depth (+) Per cent agriculture

in catchment (+)
Min. temperature coldest

month (+)
pH (+) Per cent fine

gravel (+)
Annual precipitation (+)

Ammonium (�) Total suspended

solids (�)

Precipitation driest

quarter (+)

Table 2 Comparisons between the three model types used in the

logistic regression: habitat-only (EPA EMAP data), climate data-

only (BioClim variables) and the combined model. By all measures,

the combined model performs best. However, the climate-only

model does a reasonable job modelling Corbicula presence and

absence, particularly as measured by AIC and pseudo-R2. The

climate model provides the majority of the fit of the combined

model despite having only half the number of variables retained in

the habitat model

K AIC DAIC Weight Pseudo-R2

Combined 9 695 0 1 0.41

Climate-only 3 769 74 9.00E-17 0.32

Habitat-only 6 988 293 2.00E-64 0.079

© 2014 John Wiley & Sons Ltd, Freshwater Biology, 59, 847–857

Climate controls species distribution 851



deviation of 0.009 (Fig. 2). Of the three variables

included in the final model, minimum temperature in

the coldest month was the most important by per cent

contribution (58.4%) and permutation importance (55),

followed by precipitation in the driest quarter (27.9%

contribution and 26.1 permutation importance) and

finally by precipitation in the warmest quarter (13.7%

contribution and 18.9 permutation importance).

Comparing the climate variables identified in the

logistic model and the MaxEnt model, precipitation in

the driest quarter and minimum temperature in the

coldest month were identified in both models as impor-

tant controllers of Corbicula distribution. The MaxEnt

model identified precipitation in the warmest quarter as

an important variable, whereas annual precipitation was

retained in the logistic regression. Precipitation in the

warmest quarter was a candidate variable for the logistic

regression, but was not identified as a significant predic-

tor of Corbicula’s distribution. Likewise, annual precipita-

tion was a candidate variable in the MaxEnt model, but

was not a significant predictor of Corbicula’s distribution

using that modelling approach.

The MaxEnt model suggests that Corbicula is limited

to southern New York and the southern extent of the

Great Lakes under current climate conditions, leaving

much of the Midwest climatically unsuitable (Fig. 3a).

Under all three future climate scenarios, the range is

predicted to expand throughout New England, the

Midwest and into the Great Lakes by 2080, or potentially

sooner (Fig. 3b,c,d). The exact range varies between the

three climate scenarios, but the overall range increase is

fairly consistent. Using the intermediate threshold (10%

training presence) presented in Fig. 3, Corbicula’s poten-

tial range is predicted to increase from 37% of the United

States by area to 46, 49 or 48.5% under the B2A, A1B and

A2A climate scenarios, respectively. This increase in

range represents a total areal increase of 25–32% in the

distribution of Corbicula, and this occurs despite slight

range retractions in Louisiana and southern Florida under

the A1B climate scenario (Fig. 3c) and nearly all of Florida

in the A2A climate scenario (Fig. 3d).

Discussion

The distribution of the widespread invasive freshwater

clam Corbicula fluminea is controlled both by habitat vari-

ables, such as substrate and pH, and by climate vari-

ables, indicating the potential interaction between

invasive species and climate change, as predicted by

many studies (Hellmann et al., 2008; Rahel & Olden, 2008;

Strayer, 2010). Within our extensive data set, climate

variables are more important than habitat in driving

the distribution of Corbicula. This supports the recent

findings of Petitpierre et al. (2012) showing widespread

invaders have similar climate niches in their native and

invasive ranges. The clear importance of climate variables

in controlling Corbicula’s distribution in the logistic

regression makes our use of the climate-only MaxEnt

model particularly appropriate. The switch to climate-

only modelling with MaxEnt is also advantageous

Fig. 2 Receiver operating curve (ROC) for the five replicates of the

maximum entropy model using the three selected BioClim vari-

ables: minimum temperature in the coldest month, precipitation in

the driest quarter and precipitation in the warmest quarter. The

average area under curve was 0.762 and was very consistent across

the five model replicates.

Fig. 1 Receiver operating curve (ROC) for the three candidate

models in the logistic regression: habitat-only (EPA EMAP data,

dashed line), climate-only (BioClim data, dot and dashed line) and

the combined model (solid line). Sensitivity, the proportion of

points that the model identifies as suitable that are truly suitable is

on the y-axis. On the x-axis, 1 – specificity is plotted, which is a

measure of the false-positive rate. The climate-only model outper-

formed the habitat-only model (area under curve = 0.890 and 0.713,

respectively). The combined model performed best (AUC = 0.917),

but was only slightly better than the climate-only model at predict-

ing Corbicula’s presence. A perfect model would have an AUC of 1.

The expected results from a random relationship are included in

the 1:1 line and would have an AUC of 0.5 (large dashed line).
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because it allows us to use the much larger set of known

Corbicula locations where habitat factors were unmea-

sured. Climate envelope models are often criticised for

failing to include other important variables or failing to

compare the importance of climate variables relative to

other biotic and abiotic factors (Pearson & Dawson, 2003).

By explicitly making this comparison, we have demon-

strated that a climate-only MaxEnt model can capture a

major portion of the variability in a species distribution at

the continental scale.

Our results show that a significant expansion in

Corbicula’s range throughout the northern and central Uni-

ted States is probable with future temperature increases.

This may already be occurring, as a population was identi-

fied in the Merrimack River, New Hampshire, while this

analysis was being conducted (New Hampshire Depart-

ment of Environmental Services (NH DES), 2012). This

range expansion could be rapid and occur soon, because

climate changes appear to be occurring at the higher

range of predicted temperature changes (Fasullo &

Trenberth, 2012). The models also identified waterbodies

with higher pH and fine gravel substrate as likely to be

suitable for Corbicula, which supports previous studies

that indicated Corbicula’s preference for sand and fine

gravel substrates (McMahon, 1999; McMahon & Bogan,

2001). These results can help catchment managers to tar-

get and monitor vulnerable habitats. Because of this,

catchment managers in New England and the northern

central United States should be aware that rivers with

neutral to basic pH and sandy substrate are particularly at

risk of invasion. Monitoring for early detection coupled

with an eradication or control plan may be able to prevent

widespread establishment, especially in lentic environ-

ments, where populations of Corbicula have been reduced

using gas impermeable barriers (Wittman et al., 2012).

Given Corbicula’s high per biomass filtration rates (McMa-

hon & Bogan, 2001; Atkinson et al., 2010), high densities

and influential impacts, newly invaded rivers could expe-

rience significant changes in energy flow and community

structure, as observed in previously invaded rivers

(a) (b)

(c) (d)

Fig. 3 A map of modelled likelihood of Corbicula presence, from a maximum entropy model based on current climate conditions of three

BioClim variables: minimum temperature coldest month, precipitation in the driest quarter, precipitation in the warmest quarter (Bio 6, 17,

18) for: (a) current climate conditions, and projected conditions in 2080 under (b) B2A emissions scenario, (c) A1B emissions scenario and

(d) A2A emissions scenario (listed in increasing warmness). The map is presented using various thresholds of suitability, as calculated by

MaxEnt. Equate entropy is a more liberal threshold, which will determine a larger area to be suitable than the 10% training presence

threshold or the most conservative threshold, equal sensitivity and specificity.
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(Cohen et al., 1984; Lauritsen, 1986; Phelps, 1994; Hakenk-

amp & Palmer, 1998; Sousa, Antunes & Guilhermino,

2008a).

Under the A2A climate scenario, the one with the high-

est emissions, the area deemed climatically suitable in the

southeastern United States is predicted to shrink in

southern Florida. The A2A projections predict a decline

in precipitation in the driest quarter and an increase in

overall temperature. The interaction between increasing

temperatures and declining precipitation is probably

responsible for the classification of this area as unsuitable

according to the more conservative thresholds. There is

no reason why increasing minimum temperature would

lead to areas being unsuitable for Corbicula; however,

maximum temperature and minimum temperature co-

vary. Increased maximum temperatures and decreased

precipitation could lead to mass mortality events such as

those observed during periods of low water level and

high temperature (Cohen et al., 1984; Ilarri et al., 2011;

Bodis, Toth & Sousa, in press; W.G. McDowell pers.

obs.), due to the inability of Corbicula to regulate its

oxygen consumption under stressful conditions (McMa-

hon, 2002). In all these observed cases, however, Corbicula

populations quickly rebounded from the mass mortality

events (and were probably sped in such recovery from

fast growth in warmer water) and were not removed

from a river entirely. Regarding the future suitability of

southern Florida, it is important to note, however, that

under the A2A climate scenario, a combination of precip-

itation and temperature conditions in Florida arises that

does not exist in the training data, so the model results

are extrapolated beyond training data and should be

interpreted cautiously (Elith et al., 2006).

The combined climate and habitat model explained a

substantial amount of the variability in Corbicula pres-

ence and absence. Some of the remaining variability

may be explained by biotic factors such as competition

and predation, which are not included in these models.

Within dense beds of native mussels, there are indica-

tions that competition may prevent establishment of

Corbicula (Vaughn & Spooner, 2006). When examining

presence and absence on a reach or river scale, however,

this is unlikely to prevent establishment of Corbicula.

Although predation has been shown to control densities

(Robinson & Wellborn, 1988), there is no evidence that

predators can remove Corbicula from a system entirely.

Few barriers to Corbicula dispersal into suitable habitat

seem to exist, given its rapid expansion in the southeast-

ern United States following its introduction (McMahon

& Bogan, 2001). Because Corbicula can disperse widely

and has been present throughout the western United

States for 80 years and the eastern United States for 30–

40 years, Corbicula has probably reached most of the

locations that are climatically suitable for it to survive

under current climate conditions. For species with a

shorter invasion history or larger barriers to dispersal, it

is necessary to recognise that the current distribution of

the species may not reflect climatic tolerances. Because

of this, species distribution models for such species are

less reliable, and it is critical to acknowledge the limita-

tions of modelling in this regard.

There are two caveats to consider when interpreting

our results. First, as is typical for almost all large-scale

climate models for aquatic species, air temperature was

used in place of water temperature in both the logistic

regression and the MaxEnt models. Air temperatures

typically track water temperatures well, and similar

approaches have been successfully used to model aqua-

tic species including freshwater diatoms, snails, sala-

manders and trout (Kumar et al., 2009; Milanovich et al.,

2010; Wenger et al., 2011; Blank & Blaustein, 2012; Byers

et al., 2013). There will be some discrepancies between

air temperature and water temperature, and these differ-

ences will probably be greater for large bodies of water,

systems with large amounts of groundwater inputs and

hot springs. In fact, these site-specific discrepancies may

explain some of the outlier points, especially those in

large river systems where local water temperature may

be buffered against extreme fluctuations in air tempera-

ture. Given that more than 2800 known Corbicula loca-

tions went into the model, it is not surprising that some

of these points known to contain Corbicula fall outside

what is considered to be a suitable climate. Nevertheless,

only 3% fell outside the most liberal threshold pre-

sented. Also, it is important to recognise that significant

departures from natural conditions may allow Corbicula

to persist in environments that would otherwise be

unsuitable. For example, several points in the USGS

NAS Database include brief notes regarding outflow of

water used in cooling operations. This warmer micro-

climate may allow Corbicula to persist in an area not

predicted to be hospitable based on air temperature.

Second, our model does not make any predictions

regarding densities, nor does it address how the effects

of Corbicula on a previously colonised or newly invaded

aquatic ecosystem might be altered by climate change.

Density is one of the main factors controlling the impact

of a non-indigenous species (Parker et al., 1999), and

areas that are deemed suitable habitat may support

widely varying densities of Corbicula. Modelling densi-

ties go beyond the abilities of the approaches used in

this paper and present an interesting challenge for
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future work. The interactions between Corbicula behav-

iour and climate change could lead to alterations in their

impacts. For example, increasing temperatures could lead

to higher metabolic rates and increased filtration and

nutrient uptake by Corbicula (Spooner & Vaughn, 2008).

However, at very high temperatures, mass mortalities of

Corbicula can occur and may negatively affect water qual-

ity and native mussels by increasing toxic concentrations

of ammonia in porewater and the water column (Cherry

et al., 2005; Cooper, Bidwell & Cherry, 2005). Climate

change could make these events more common.

In summary, it is critical to assess the importance of

climate in controlling the distribution of a species, as

this dramatically affects the weight that should be given

to the impacts of climate change and more local drivers.

By empirically testing the relative importance of climate

and carefully considering the biology of the organism

being studied, we have demonstrated that Corbicula is

likely to expand well beyond its current distribution.

Already widely distributed, Corbicula could become

nearly ubiquitous throughout the conterminous United

States. MaxEnt and the freely available BioClim data

make constructing a species distribution model for cur-

rent and future distributions deceptively easy, and their

misuse opens them up to criticism (Woodward & Beer-

ling, 1997; Haegeman & Loreau, 2008). However, the

combination of multiple approaches allows us to recog-

nise what the models are capturing well and can lead to

a more robust result than any single model alone.
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