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Invasion Expansion: Time since 
introduction best predicts global 
ranges of marine invaders
James E. Byers1, Rachel S. Smith1,3, James M. Pringle2, Graeme F. Clark3, Paul E. Gribben4, 
Chad L. Hewitt5, Graeme J. Inglis6, Emma L. Johnston3, Gregory M. Ruiz7, 
John J. Stachowicz8 & Melanie J. Bishop9

Strategies for managing biological invasions are often based on the premise that characteristics of 
invading species and the invaded environment are key predictors of the invader’s distribution. Yet, for 
either biological traits or environmental characteristics to explain distribution, adequate time must 
have elapsed for species to spread to all potential habitats. We compiled and analyzed a database 
of natural history and ecological traits of 138 coastal marine invertebrate species, the environmental 
conditions at sites to which they have been introduced, and their date of first introduction. We found 
that time since introduction explained the largest fraction (20%) of the variability in non-native range 
size, while traits of the species and environmental variables had significant, but minimal, influence 
on non-native range size. The positive relationship between time since introduction and range size 
indicates that non-native marine invertebrate species are not at equilibrium and are still spreading, 
posing a major challenge for management of coastal ecosystems.

Predicting the impact and spread of biological invasions remains a key challenge for environmental 
management1,2. Characteristics of the receiving environment, native biota, and the species themselves 
have all been implicated as determinants of species establishment, spread, and impact3–8. Yet there is little 
agreement on the relative utility or generality of these predictors, despite the fact that they are used to 
inform our investments in preventing invasion and mitigating impacts. For example, to minimize impact 
from non-native species should we prioritize approaches that ban importation of species with certain 
traits, or guard habitats that seem particularly vulnerable?

In assessing invader impact and its key drivers, a quantifiable metric is required. The range size of a 
non-native species is among the most relevant because when multiplied by a species’ mean density and 
per capita effects, it determines the species’ total impact9. Range is often the easiest component of impact 
to measure, probably has the smallest estimation error (on the order of 10%)9, and can display over seven 
orders of magnitude variation among species. Furthermore, within a species’ native geographic distri-
bution, range is responsive to species traits (body size, niche breadth) and environmental conditions10. 
For example, among marine invertebrates, species with more mobile or longer-lived dispersal stages have 
significantly larger native geographic ranges than species with non-feeding, less mobile larvae (e.g.,11–13), 
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and body size is also associated with range size within some taxa14,15. Such patterns within native ranges 
form the basis for using these traits to predict the potential impact and spread of invasions.

Although species traits and environmental conditions are sometimes good predictors of the range 
sizes of native species, they may not work well in predicting the novel ranges of introduced species’ 
where species have not yet reached geographic equilibrium. If the rate of post-introduction dispersal or 
population growth is low, time since introduction could have a strong influence on the distribution and 
abundance of these species16–18. Thus, although species’ traits and environmental attributes may ulti-
mately predict the potential range occupied by species, non-native species may not have been present long 
enough to spread and occupy the total potential range, making the influences and relative importance of 
environmental and species traits harder to discern. As a result, species may appear to have weak habitat 
and environmental affinities if other processes, such as dispersal limitation, delay the occupation of suita-
ble habitats in a significant portion of the potential range19. The confounding effects of time could in part 
be responsible for discord in the science and management communities about the relative importance of 
different factors driving invasion success20, and thus which management options deserve highest priority.

We investigated the ability of introduced species’ traits, environmental attributes of the recipient 
environment, and time since first introduction globally to explain the non-native geographic ranges of 
marine invertebrate species. Vectors typically responsible for introducing marine invertebrate species 
are ships (ballast water, hull fouling), aquaculture imports (primarily oysters and associated hitchhiking 
species), and live trade (aquarium, live seafood, bait)21. Once in a new range a species can continue to 
spread secondarily through these same human-mediated vectors, as well as through natural dispersal, 
including passive transport of dispersive stages in the water column (e.g., larvae) and to a lesser degree 
through active locomotion (e.g., walking or swimming).

Using the Global Biodiversity Information Facility (GBIF, http://www.gbif.org/), we developed a data-
base of 138 species of coastal marine invertebrates that are non-native in Australia, New Zealand, or 
the United States—well-studied domains with some of the world’s richest data for marine invasions and 
environmental variables (Supplementary Table 1). To control for variation in data quality, we included 
in our database only marine invertebrates non-native to these countries that: 1) are present in benthic 
habitats; 2) are not restricted to brackish water; 3) are not part of known cryptic species complexes 
(which can enhance the probability of misidentification); 4) have sufficient life history information to 
contribute to our analyses; and 5) have known native ranges (i.e., not cryptogenic). For each species we 
logged all recorded locations in the non-native range, tabulated the length of its non-native distribution 
separately for each continental coastline, and summed these values across coasts to calculate the total 
non-native range size to be used as our response variable. From the literature we extracted time since the 
first record of introduction anywhere in the world and life history attributes, including maximum body 
size, adult mobility (sessile or mobile), adult habitat (epifaunal or infaunal), and larval development type 
(planktonic or non-planktonic). These variables were selected because they are easy to measure, have 
widely available information, and have previously been shown to either directly or indirectly influence 
dispersal and/or population growth rate. We extracted physical data on annual and seasonal averages and 
standard deviations in water temperature, salinity, and currents for all the GPS points of occurrence in 
the non-native range from a 1-degree resolution climatology of oceanographic variables. These physical 
variables address whether there are certain abiotic/environmental properties more associated with inva-
sion, for example, if warmer or saltier domains are more heavily invaded, i.e. promote broader ranges 
in invasive species. To aid visualization of our results, for each species we also recorded the latitudinal 
range it occupied along each coastline.

The sizes of species’ non-native ranges along coastlines varied widely, ranging between 50 km (our 
minimum resolution) and 23,000 km (Fig. 1). The single most important variable in predicting non-native 
range size was time since first recorded global introduction. Time explained 20% of variation in range 
size (Fig. 2), and was present in every top fitting model, hence its relative variable importance (RVI) of 
1.0 (Table 1). The best-fitting model also contained maximum body size, habitat type, and mean salinity 
and explained 29% of variation in range size. Among the top models, several other biological and phys-
ical variables, especially mean spring water temperature, contributed slightly to the overall fit (Table 1), 
but little relative to time since invasion (Supplementary Figure 1).

Time since first global record of introduction is a powerful explanatory variable for predicting the 
current extent of coastal non-native invertebrate species’ distributions. The strong, positive slope of the 
relationship, with the absence of an asymptote, suggests that many invaders are not yet at geographic 
equilibrium, and signals their continuing spread. The slope of the relationship (37.8) indicates that 
non-native species expand on average ~400 km per decade. Although our results do not expose which 
mechanistic processes are driving expansion as a function of time, many influential ecological and evolu-
tionary processes that affect spread rates of non-native species are a function of time, such as population 
growth rates, dispersal rates, competitive exclusion, and selection (e.g.,22,23). Therefore, time may serve, 
at least in part, as a useful proxy variable that integrates and subsumes the influences of many processes 
that are harder to measure directly.

Our study marks the first instance that the influence of time since global introduction has been con-
sidered comprehensively as a predictor of spatial extent of marine invasions, and it is striking that effects 
of time since invasion emerge despite considering taxa from 10 phyla, spanning diverse life histories and 
ecological characteristics. The median year since the first global record of introduction in our dataset 

http://www.gbif.org/
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Figure 1.  Ranges, distribution and invasion age of species in our study. Waterfall plot of the coastal 
ranges of non-native marine invertebrate species along the focal coastlines of this study shown as the 
latitudinal bands of species’ distributions. Some species may appear in more than one panel if present on 
more than one coast. Blue represents species whose first record of introduction anywhere in the world 
is before 1954 (i.e. the median time in our dataset, “Old”); red represents species whose first record 
of introduction anywhere in the world is between 1954–2012 (“Young”). New Zealand plot does not 
differentiate between east and west coasts. Figure was created in R 3.1.

Figure 2.  Relationship between a species’ time since first record of introduction anywhere and the 
length of coastline it occupies in its non-native range. Time since invasion is the single-most influential 
variable on range, explaining 20% of the variability. Range =  37.8 x Years since first record of global 
invasion +  138 (R2 =  0.20, P <  0.0001).
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is 1954, reflecting a relatively recent influx of species, especially compared to the median time for plant 
invasions in terrestrial systems which is often 1900 or earlier (e.g.,16,24–27). Although introduction history 
in the ocean seems more recent, this largely reflects a limited historical baseline of species inventories 
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Null 0 — 2643.4 38.9 4.7 ×  10−10

A 4 0.29 2604.5 0.0 0.134 0.42 –0.19 0.15 −0.20

B 5 0.30 2605.3 0.8 0.090 0.42 –0.19 0.15 − 0.08 –0.16

C 5 0.30 2605.6 1.1 0.078 0.41 –0.18 –0.08 0.14 –0.21

D 6 0.31 2605.7 1.2 0.073 0.40 –0.20 0.15 0.13 –0.17 –0.17

E 4 0.29 2605.9 1.4 0.068 0.45 –0.20 0.15 –0.15

F 5 0.30 2606.1 1.6 0.061 0.42 –0.19 0.14 –0.07 –0.20

G 5 0.30 2606.4 1.9 0.052 0.41 –0.20 0.16 0.05 –0.22

H 6 0.31 2606.6 2.1 0.047 0.41 –0.18 –0.08 0.13 –0.07 –0.17

I 7 0.32 2606.7 2.2 0.045 0.39 –0.18 –0.09 0.13 0.14 –0.16 –0.19

J 3 0.27 2606.8 2.3 0.042 0.41 –0.18 –0.21

K 6 0.31 2606.9 2.4 0.040 0.42 –0.19 0.13 –0.07 –0.08 –0.16

L 4 0.28 2606.9 2.4 0.040 0.40 –0.16 –0.11 –0.23

M 7 0.32 2607.0 2.4 0.040 0.40 –0.19 0.13 –0.08 0.14 –0.17 –0.18

N 4 0.28 2607.2 2.7 0.035 0.41 –0.18 –0.10 –0.16

O 7 0.32 2607.3 2.8 0.033 0.39 –0.20 0.15 –0.10 0.22 –0.19 –0.17

P 6 0.30 2607.3 2.8 0.033 0.40 –0.18 –0.09 0.14 0.06 –0.24

Q 7 0.31 2608.0 3.4 0.024 0.40 –0.20 0.15 0.13 –0.17 –0.16 0.02

R 3 0.26 2608.0 3.5 0.023 0.45 –0.19 –0.17

S 3 0.26 2608.9 4.4 0.015 0.46 –0.20 0.18

T 3 0.26 2609.2 4.6 0.013 0.39 0.15 –0.23

U 2 0.24 2610.7 6.2 0.006 0.40 –0.22

V 2 0.23 2611.8 7.3 0.004 0.44 –0.18

W 2 0.23 2612.2 7.7 0.003 0.45 –0.19

X 2 0.22 2613.6 9.1 0.001 0.45 0.16

Y 1 0.20 2616.0 11.4 0.0004 0.44

Z 1 0.09 2632.9 28.4 9.1 ×  10–8 –0.30

AA 1 0.05 2638.7 34.2 5.1 ×  10–9 –0.19

BB 1 0.02 2642.2 37.7 8.9 ×  10−10 –0.16

RVI 1.00 1.00 0.26 0.83 0.18 0.08 0.28 0.55 0.08 0.84 0.12

Table 1.   Models explaining the coastal range (in km) occupied by non-native marine invertebrates. The 
four best fitting models are shown for each number of variables up to seven; with eight or more variables, 
models fit poorly (Δ AICc value >  3.7). The standardized beta coefficients associated with each independent 
variable are shown for each model (italics represent coefficients significant at P <  0.05 level). The best, most 
parsimonious model with the lowest Akaike information criterion (AICc) value is shown in bold. A null 
(intercept only) model is also compared. Δ AICc indicates the difference in model parsimony as explained 
by AICc relative to the best model; lower Δ AICc values indicate higher support for a model. Values of R2 
and Akaike weight (wi) for each model are also shown. Akaike weights were calculated across the models 
shown in table. RVI (relative variable importance) is the sum of the weights (wi) of all models containing 
a particular parameter and were calculated across the best 40 models (lowest AICc). Habitat represents 
whether species is epifaunal or infaunal; mobility is sessile or mobile. Beta coefficients indicate that 
distributional extent decreases if habitat is epifaunal, and decreases for species that are mobile as adults.
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compared to terrestrial biotas28,29—a notion supported by the high number of species designated as 
cryptogenic in marine environs30. Despite the older introductions, many terrestrial plant studies have 
similarly shown a significant positive influence of time on range size18,27. Other taxa with more active 
dispersal may achieve equilibrium distributions quickly, especially when confined to a small region, such 
as birds in New Zealand, which showed no correlation between invasion time and current range size31.

That non-native species are largely not at equilibrium is one explanation for why other environmental 
and biological trait variables did not hold much explanatory power. If a species is not occupying its full 
niche space, areas with suitable combinations of habitat and environmental characteristics may still have 
an absence of the species due to dispersal limitation. However, failure to detect an effect of invader traits 
or recipient environment on range size may also result from other explanations. Variables we did not 
include in our model may have large influences on some species’ ranges, especially biotic interactions 
such as competition, predation, and mutualism. It is difficult, for example, to quantify recipient commu-
nity diversity, or other proxies for the intensity of biotic interactions at all the invaded locations in our 
database, and poor descriptions of native ranges for many invaders preclude using donor environment 
characteristics. Both of these aspects have been implicated in predicting invasion success32 and may 
account for some of the unexplained variance in our models.

Also, it is possible that no single variable is universally important in predicting species’ range sizes33,34, 
and so the failure of factors to contribute to range prediction occurs because species respond idiosyn-
cratically to these factors. However, we view this as unlikely, given the first order importance of certain 
variables, such as salinity and temperature, in affecting organisms’ physiology, defining their ecolog-
ical niches, and thus helping to set species biogeographic ranges10,35,36. It also seems unlikely that the 
lack of environmental correlates of range size stems from a poor characterization of the range due to 
under-sampling, poor data quality, or slow time to publication. While some under-reporting of occur-
rence data undoubtedly exists, the geographic region and species selected for analyses are well studied, 
serving to constrain such biases, and we did find a strong correlation of range with time since invasion. 
If lags exist in the discovery and reporting of invaders from their actual time of invasion, as long as these 
lags are random or unbiased across species, this effect should not affect the slope of the relationship 
between time since invasion and range size but would only shift the relationship to the right (lower the 
intercept of the relationship).

The lack of a standard influence of climate-related variables like temperature in our analysis is note-
worthy, but is not inconsistent with reports that warming temperatures have facilitated invasions in some 
locations37 or resulted in range expansions of native species (e.g.,38,39). Even if a species’ range is expanded 
in one direction as a result of climate change, the total range size may still be a fraction of the potential 
range. Furthermore, we might expect climate change to have a minimal effect on total range size because 
expansions in one direction along a coastline may be balanced by contractions in another. In general, we 
urge caution in interpreting net climatic effects (or the lack thereof) for invasive species with potential 
ranges that are currently undersaturated.

In conclusion, the importance of the length of time since first global introduction implies that many 
invaders are still spreading, which increases the difficulty in detecting key trait and environmental con-
trols of biological invasions from broad scale correlative analyses. Time since first global introduction 
is an appealing predictive variable because it is discrete, and relatively easy to quantify. However, unlike 
habitat and trait variables, it does not help to build a preventative model of spread since it is a varia-
ble that is quantifiable only post-invasion. Because the footprint of existing non-native species is still 
expanding, any consideration of their potential impact (sensu 9) is likely underestimated. Our findings 
further suggest that the current best general strategy to preemptively protect areas from invasion is to 
identify vulnerable areas based on vector inputs as opposed to site and species characteristics.

Methods
Choosing species for inclusion.  We focused on marine benthic invertebrate species that are 
non-native to either Australia, New Zealand, or the United States because these countries have the most 
complete data available on distributional range for non-native species. We accumulated target species 
by first compiling a comprehensive list of introduced species from previously assembled, publicly avail-
able national port surveys and non-native species databases in these countries. For Australia we used 
the Australian port surveys’ list of known exotic species in Australian waters (summarized in40), the 
Australian National Consultative Committee on Introduced Marine Pest Emergencies (CCIMPE) trigger 
list species. For New Zealand we used the New Zealand Port Biological Baseline Survey list of introduced 
species (http://www.marinebiosecurity.org.nz/programme-information-port-survey/). For the United 
States, sources for our initial species list were the United States Geological Survey Nonindigenous Aquatic 
Species database (http://nas.er.usgs.gov/), the United States National Exotic Marine and Estuarine Species 
Information System (http://invasions.si.edu/nemesis/index.html), and the United States NOAA Technical 
Memorandum NOS NCCOS 77 (http://coastalscience.noaa.gov/documents/techmemo77.pdf).

We excluded most aquaculture species, as these species have been intentionally introduced and nur-
tured to thrive in their new environments, and often specific steps are taken in association with their 
introduction to either prevent or promote spread. We also excluded brackish species and species known 
to comprise a cryptic species complex, i.e., more than one species (e.g. Namanereis littoralis).

http://www.marinebiosecurity.org.nz/programme-information-port-survey/
http://nas.er.usgs.gov/
http://invasions.si.edu/nemesis/index.html
http://coastalscience.noaa.gov/documents/techmemo77.pdf
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Data collection.  Literature search: Compilation of species and their traits.  First, we checked species 
taxonomies against the World Register of Marine Species (WoRMS, http://www.marinespecies.org/
index.php), and acquired the accepted taxonomic name and associated synonyms. Then, for each spe-
cies, we collected life history trait and invasion history data. Relevant life history traits included spe-
cies’ temperature and salinity tolerances, depth range, larval duration, development type (planktonic 
or non-planktonic), maximum body size, habitat use (infaunal or epifaunal), and mobility (mobile or  
sessile). We also categorized species by phylum. We began our data gathering by mining the above data-
bases, plus previously compiled species fact sheets from Australian and New Zealand governments (http://
www.daff.gov.au/__data/assets/pdf_file/0008/2059154/species-biofouling-risk-assessment.pdf; NIWA 
pest sheets from G. Inglis), as well as fact sheets from the Bishop Museum and University of Hawaii, 
(http://www2.bishopmuseum.org/HBS/invertguide/species_pdf/guide.pdf). All information from fact 
sheets was double-checked with the referenced primary sources. We also extracted data from the follow-
ing non-indigenous species online databases (searching for each species under all its synonyms): 1) The 
National Exotic Marine and Estuarine Species Information System (NEMESIS, http://invasions.si.edu/
nemesis/index.html), 2) the National Introduced Marine Pest Information System (NIMPIS, http://adl.
brs.gov.au/marinepests/index.cfm?fa= main.about), 3) the Global Invasive Species Database (http://www.
issg.org/database/welcome/), 4) the Exotics Guide: Non-native Marine Species of the North American 
Pacific Coast (http://www.exoticsguide.org/), 5) the Invasive Species Compendium (http://www.cabi.org/
isc/default.aspx?site= 144&page= 4066), 6) the European Network on Invasive Alien Species (NOBANIS, 
http://www.nobanis.org/), 7) Delivering Alien Invasive Species Inventories for Europe (DAISIE, http://
www.europe-aliens.org/default.do), 8) the Marine Life Information Network (MarLIN, http://www.mar-
lin.ac.uk/), and 9) the United States Geological Survey Nonindigenous Aquatic Species (NAS, http://nas.
er.usgs.gov/).

To fill in missing data we then performed targeted literature searches of the gray literature and 
peer-reviewed journals in Web of Science and Google Scholar. Two life history traits—minimum duration 
of larval stage and development type—still had data missing after these literature searches. For these spe-
cies we made reasonable assumptions for some life history traits based on species taxonomic group. For 
example, in the absence of a source, we assumed colonial ascidians to be lecithotrophic (yolk-feeding), 
with minimum larval durations of less than 24 hours. We kept data with added assumptions separate 
from data with concrete sources so that we could ascertain if inclusion of the assumptions differentially 
affected the model outcome. Several life history traits (e.g., larval temperature and salinity tolerance, lar-
val duration, age and size at maturity, depth range) were still missing from more than 25% of the species 
and so they were no longer considered in the model construction. The final trait variables that had full 
representation in the dataset were: maximum body size, adult mobility (sessile or mobile), adult habitat 
(epifaunal or infaunal), and larval development type (planktonic or non-planktonic). Overall, the final 
dataset contained 138 species.

From the literature we also extracted for each species its time since the first record of introduction 
anywhere in the world.

Quantifying distribution data.  We used species occurrence data from the Global Biodiversity Information 
Facility database (GBIF, http://www.gbif.org/) to quantify species ranges. Specifically we calculated the 
total length of coastline occupied by a species in its non-native range.

Ranges were determined for each non-native species by first downloading from GBIF exact latitudinal 
and longitudinal coordinates for each point of the species’ occurrence and then partitioning non-native 
from native occurrences using the previously described literature search. We then introduced the geo-
graphic coordinates for the non-native occurrences of each species into Google Earth, and used the 
measuring tool to measure ranges (in km), spanning occurrences, along the coastline of each ocean 
basin in both northern and southern hemispheres. That is, separate range distributions were calculated 
for the east and west coastlines of the Atlantic and Pacific Oceans in both the Northern and Southern 
Hemispheres. Where multiple points of occurrence occurred on large islands (e.g. Tasmania), ranges 
were measured around the coastline in the same manner as continents; occurrences on oceanic archi-
pelagos > 1000km from a continental coastline were treated as a separate distribution and ranges were 
measured as a straight line through the cluster of occurrences. All single, isolated points of occurrence 
were given a common distance measurement of 50 km. To prevent overestimation of ranges, if two neigh-
boring points of occurrence on a coastline were > 1500 km apart, then the range was not considered 
continuous through this stretch and the ranges on either side of those points were tabulated as disparate. 
The distances of ranges for all disparate segments along each coastline (and oceanic islands) were then 
summed across all coasts to give a total range size in km.

Any single, isolated points of occurrence in GBIF that had no corroborating documentation within 
the literature were ignored. (Such instances were few, and their inclusion would have only added 50 km 
to the total calculated range). We also eliminated coordinates if they clearly exhibited human error, such 
as points with zero values for both latitude and longitude, or if coordinates were located inland (e.g. as 
is sometimes the case for museum specimens).

For 25 known non-native species without GBIF occurrences, we assigned coordinates to the range 
distributions extracted during our extensive literature search. For most of these species, exact latitudinal 
coordinates were given, but in a handful of cases only general descriptions were given (e.g. “coast of 

http://www.marinespecies.org/index.php
http://www.marinespecies.org/index.php
http://www.daff.gov.au/__data/assets/pdf_file/0008/2059154/species-biofouling-risk-assessment.pdf
http://www.daff.gov.au/__data/assets/pdf_file/0008/2059154/species-biofouling-risk-assessment.pdf
http://www2.bishopmuseum.org/HBS/invertguide/species_pdf/guide.pdf
http://invasions.si.edu/nemesis/index.html
http://invasions.si.edu/nemesis/index.html
http://adl.brs.gov.au/marinepests/index.cfm?fa=main.about
http://adl.brs.gov.au/marinepests/index.cfm?fa=main.about
http://www.issg.org/database/welcome/
http://www.issg.org/database/welcome/
http://www.exoticsguide.org/
http://www.cabi.org/isc/default.aspx?site=144&page=4066
http://www.cabi.org/isc/default.aspx?site=144&page=4066
http://www.nobanis.org/
http://www.europe-aliens.org/default.do
http://www.europe-aliens.org/default.do
http://www.marlin.ac.uk/
http://www.marlin.ac.uk/
http://nas.er.usgs.gov/
http://nas.er.usgs.gov/
http://www.gbif.org/
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California”), in which case we assigned coordinates by recording a geographic coordinate every 200 km 
along the coastline of the reported locale (e.g., every 200 km along the coast of California). To test the 
concordance of the GBIF and literature-based data gathering approaches, we applied the literature-based 
method to ten randomly chosen species with available GBIF coordinates to calculate how similar the 
non-native ranges were between these two methods. Ranges of the two methods were generally con-
gruent, although species with available GBIF occurrence data tended to slightly underestimate the 
literature-extracted geographic ranges. We organized the range distribution data to allow for analysis of 
species collected with GBIF methodology both separately and combined with the species extracted with 
literature-based methods. Finding no substantial differences between the pooled data and the GBIF data 
alone, we used the pooled dataset for formal analyses.

Physical data.  We collected seasonal and annual oceanographic data for each species in its non-native 
geographic ranges using the same coordinates of species occurrence points we extracted from GBIF (or 
the literature for those 25 species). We extracted oceanographic parameters—current speed, tempera-
ture, and salinity—for each species occurrence point from the closest one-degree by one-degree boxes 
included in both the World Ocean Atlas 2009 (http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html) 
and the Drifter Data Assembly Center (http://www.aoml.noaa.gov/phod/dac/dacdata.php). This is the 
highest resolution global data set with coastal coverage that includes ocean currents. We calculated the 
mean, standard deviation, minimum, and maximum for each parameter across all occurrences for all 
seasons (defined as standard oceanographic seasons for northern and southern hemispheres), as well as 
for the year in total. An annual range in temperature and salinity was also calculated.

Analyses.  We used a model information-theoretic framework to test the relative influence of time 
since introduction, biological characteristics of species, and physical habitat properties on non-native 
range distributions. Residuals of the data were nearly normal, and so they did not require transforma-
tion. We fit multiple linear regression models to the measured cumulative range size of each species 
and selected the minimally adequate models with corrected Akaike’s Information Criterion (AICc). We 
estimated the standardized beta coefficients of all variables (including categorical ones) to enable com-
parisons of relative importance among the predictor variables.

Predictor variables included time since introduction, habitat (epifaunal vs infaunal), mobility (sessile 
vs mobile), maximum body size, development type (planktonic vs non-planktonic), mean current speed 
in spring, annual current variability, mean spring temperature, annual standard deviation in temperature, 
annual mean salinity, and annual standard deviation in salinity. Minimum larval duration, a trait that 
was only available for a small subset of the species, was also explored but showed extremely little effect, 
so was removed to increase the overall degrees of freedom in the model by having a more complete 
dataset. Instead, life history attributes like development type were considered a categorical proxy for 
larval duration.

We pared down the large list of physical variables by generating a covariance matrix of seasonal and 
annual temperatures, and then again for salinity. Many variables were highly correlated (R >  0.9), and 
among such clusters we selected one representative variable among those where R >  0.7 for entry into 
the final model competitions. Mostly, this meant using yearly averages and standard deviations. The only 
exceptions were for mean current speed and temperature for which we used spring values since this is 
the peak period of spawning for many species with broadcast larvae41 and thus a time when larvae in 
the water column, and thus spread rates of populations, can be most influenced by these variables42.

To identify a minimally adequate model, we first fit linear regressions with all possible combinations 
of independent variables. A null (intercept only) model was also compared. Next, we selected the model 
with the lowest AICc and calculated Δ AICc for each model, which indicates the difference in model 
parsimony as explained by AICc relative to the best model; lower Δ AICc values indicate higher support 
for a model. Because other models may be nearly as good (AICc nearly as low), we also calculated Akaike 
weights (wi) across the four best models for each number of variables up to seven43. Finally, for each 
variable included in the models we calculated its Relative Variable Importance (RVI), which is the sum 
of Akaike weights across all models that included that particular variable. Because of the large number 
of models, we conducted these RVI calculations on a subset composed of the best 40 models (lowest 
AICc). AICc is a conservative version of AIC and often used when sample sizes are small. Although we 
were not overly concerned with small sample sizes, AICc converges on AIC as sample size increases and 
is considered a more conservative metric44.

To determine the robustness of results we also analyzed data with conditional random forest45 
and boosted regression trees46. Tree-based algorithms have different assumptions to linear regression, 
and consistency between predictions of various methods can be used to gauge confidence in results. 
Random forest and boosted regression trees were done using the party45 and dismo packages in R v. 
3.1.1, respectively.

Consistent with linear regression, both conditional random forest and boosted regression trees found 
‘time since introduction’ to be the overwhelmingly strongest predictor (Fig. S1, Supp Materials 3). It was 
considered over 7 times more important than any other variable by conditional forest, and approximately 
3 times more important by boosted regression trees. Both algorithms rank mean spring temperature and 

http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html
http://www.aoml.noaa.gov/phod/dac/dacdata.php
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mean annual salinity the second and third most important variables respectively, but both with much 
lower importance than time since introduction.
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